Publications by authors named "Lisa C Fetter"

Electrochemical aptamer-based (EAB) sensors are the first technology supporting high-frequency, real-time, in vivo molecular measurements that is independent of the chemical reactivity of its targets, rendering it easily generalizable. As is true for all biosensors, however, EAB sensor performance is affected by the measurement environment, potentially reducing accuracy when this environment deviates from the conditions under which the sensor was calibrated. Here, we address this question by measuring the extent to which physiological-scale environmental fluctuations reduce the accuracy of a representative set of EAB sensors and explore the means of correcting these effects.

View Article and Find Full Text PDF

Electrochemical, aptamer-based (EAB) sensors are the first molecular monitoring technology that is (1) based on receptor binding and not the reactivity of the target, rendering it fairly general, and (2) able to support high-frequency, real-time measurements in the living body. To date, EAB-derived measurements have largely been performed using three electrodes (working, reference, counter) bundled together within a catheter for insertion into the rat jugular. Exploring this architecture, here we show that the placement of these electrodes inside or outside of the lumen of the catheter significantly impacts sensor performance.

View Article and Find Full Text PDF