Publications by authors named "Lisa Byrge"

Background: Across behavioral studies, autistic individuals show greater variability than typically developing individuals. However, it remains unknown to what extent this variability arises from heterogeneity across individuals, or from unreliability within individuals. Here, we focus on eye tracking, which provides rich dependent measures that have been used extensively in studies of autism.

View Article and Find Full Text PDF

The interaction between brain regions changes over time, which can be characterized using time-varying functional connectivity (tvFC). The common approach to estimate tvFC uses sliding windows and offers limited temporal resolution. An alternative method is to use the recently proposed edge-centric approach, which enables the tracking of moment-to-moment changes in co-fluctuation patterns between pairs of brain regions.

View Article and Find Full Text PDF

Naturalistic imaging paradigms, in which participants view complex videos in the scanner, are increasingly used in human cognitive neuroscience. Videos evoke temporally synchronized brain responses that are similar across subjects as well as within subjects, but the reproducibility of these brain responses across different data acquisition sites has not yet been quantified. Here, we characterize the consistency of brain responses across independent samples of participants viewing the same videos in functional magnetic resonance imaging (fMRI) scanners at different sites (Indiana University and Caltech).

View Article and Find Full Text PDF

Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern.

View Article and Find Full Text PDF

Despite enthusiasm about the potential for using fMRI-based functional connectomes in the development of biomarkers for autism spectrum disorder (ASD), the literature is full of negative findings-failures to distinguish ASD functional connectomes from those of typically developing controls (TD)-and positive findings that are inconsistent across studies. Here, we report on a new study designed to either better differentiate ASD from TD functional connectomes-or, alternatively, to refine our understanding of the factors underlying the current state of affairs. We scanned individuals with ASD and controls both at rest and while watching videos with social content.

View Article and Find Full Text PDF

Brain networks are flexible and reconfigure over time to support ongoing cognitive processes. However, tracking statistically meaningful reconfigurations across time has proven difficult. This has to do largely with issues related to sampling variability, making instantaneous estimation of network organization difficult, along with increased reliance on task-free (cognitively unconstrained) experimental paradigms, limiting the ability to interpret the origin of changes in network structure over time.

View Article and Find Full Text PDF

A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting-state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and there remains a pressing need to determine the primary factors influencing replicability. Here, we used resting-state fMRI data from the Autism Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and data site (which differ in terms of sample, data acquisition, etc.

View Article and Find Full Text PDF

Connectome fingerprinting-a method that uses many thousands of functional connections in aggregate to identify individuals-holds promise for individualized neuroimaging. A better characterization of the features underlying successful fingerprinting performance-how many and which functional connections are necessary and/or sufficient for high accuracy-will further inform our understanding of uniqueness in brain functioning. Thus, here we examine the limits of high-accuracy individual identification from functional connectomes.

View Article and Find Full Text PDF

Residual noise in the BOLD signal remains problematic for fMRI - particularly for techniques such as functional connectivity, where findings can be spuriously influenced by noise sources that can covary with individual differences. Many such potential noise sources - for instance, motion and respiration - can have a temporally lagged effect on the BOLD signal. Thus, here we present a tool for assessing residual lagged structure in the BOLD signal that is associated with nuisance signals, using a construction similar to a peri-event time histogram.

View Article and Find Full Text PDF

The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions ("The Office", NBC Universal) in the scanner.

View Article and Find Full Text PDF

People with autism spectrum disorder (ASD) often have difficulty comprehending social situations in the complex, dynamic contexts encountered in the real world. To study the social brain under conditions which approximate naturalistic situations, we measured brain activity with FUNCTIONAL MAGNETIC RESONANCE IMAGING: while participants watched a full-length episode of the sitcom The Office. Having quantified the degree of social awkwardness at each moment of the episode, as judged by an independent sample of controls, we found that both individuals with ASD and control participants showed reliable activation of several brain regions commonly associated with social perception and cognition (e.

View Article and Find Full Text PDF

At rest, the brain's sensorimotor and higher cognitive systems engage in organized patterns of correlated activity forming resting-state networks. An important empirical question is how functional connectivity and structural connectivity within and between resting-state networks change with age. In this study we use network modeling techniques to identify significant changes in network organization across the human lifespan.

View Article and Find Full Text PDF

Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple timescales and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; and these networks, in turn, promote further change in behavior and input.

View Article and Find Full Text PDF

Place value notation is essential to mathematics learning. This study examined young children's (4- to 6-year-olds, N = 172) understanding of place value prior to explicit schooling by asking them write spoken numbers (e.g.

View Article and Find Full Text PDF