Publications by authors named "Lisa Belmont"

Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins.

View Article and Find Full Text PDF

Werner syndrome protein (WRN) is a RecQ enzyme involved in the maintenance of genome integrity. Germline loss-of-function mutations in WRN led to premature aging and predisposition to cancer. We evaluated synthetic lethal (SL) interactions between WRN and another human RecQ helicase, BLM, with DNA damage response genes in cancer cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • Bruton's tyrosine kinase (Btk) is important for activating B-cells and myeloid cells and may play a role in treating autoimmune diseases like rheumatoid arthritis and lupus.
  • A new drug, GDC-0853, has been developed as a potent, selective, and noncovalent Btk inhibitor that shows promise in preclinical tests.
  • Early studies suggest that GDC-0853 is effective in reducing disease symptoms in rats and shows good safety and effectiveness in ongoing human trials for rheumatoid arthritis, lupus, and chronic spontaneous urticaria.
View Article and Find Full Text PDF

The Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown impressive clinical efficacy in a range of B-cell malignancies. However, acquired resistance has emerged, and second generation therapies are now being sought. Ibrutinib is a covalent, irreversible inhibitor that modifies Cys481 in the ATP binding site of Btk and renders the enzyme inactive, thereby blocking B-cell receptor signal transduction.

View Article and Find Full Text PDF

BCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-XL (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/venetoclax). Resistance to these three drugs is mediated by expression of MCL-1.

View Article and Find Full Text PDF

The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets.

View Article and Find Full Text PDF

Evasion of cell death is one crucial capability acquired by tumour cells to ward-off anti-tumour therapies and represents a fundamental challenge to sustaining clinical efficacy for currently available agents. Inhibitor of apoptosis (IAP) proteins use their ubiquitin E3 ligase activity to promote cancer cell survival by mediating proliferative signalling and blocking cell death in response to diverse stimuli. Using immunoaffinity enrichment and MS, ubiquitination sites on thousands of proteins were profiled upon initiation of cell death by IAP antagonists in IAP antagonist-sensitive and -resistant breast cancer cell lines.

View Article and Find Full Text PDF

Inhibiting NAD biosynthesis by blocking the function of nicotinamide phosphoribosyl transferase (NAMPT) is an attractive therapeutic strategy for targeting tumor metabolism. However, the development of drug resistance commonly limits the efficacy of cancer therapeutics. This study identifies mutations in NAMPT that confer resistance to a novel NAMPT inhibitor, GNE-618, in cell culture and in vivo, thus demonstrating that the cytotoxicity of GNE-618 is on target.

View Article and Find Full Text PDF

Molecularly targeted drug therapies have revolutionized cancer treatment; however, resistance remains a major limitation to their overall efficacy. Epithelial-to-mesenchymal transition (EMT) has been linked to acquired resistance to tyrosine kinase inhibitors (TKI), independent of mutational resistance mechanisms. AXL is a receptor tyrosine kinase associated with EMT that has been implicated in drug resistance and has emerged as a candidate therapeutic target.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is a critical metabolite that is required for a range of cellular reactions. A key enzyme in the NAD salvage pathway is nicotinamide phosphoribosyl transferase (NAMPT), and here, we describe GNE-618, an NAMPT inhibitor that depletes NAD and induces cell death in vitro and in vivo. While cells proficient for nicotinic acid phosphoribosyl transferase (NAPRT1) can be protected from NAMPT inhibition as they convert nicotinic acid (NA) to NAD independent of the salvage pathway, this protection only occurs if NA is added before NAD depletion.

View Article and Find Full Text PDF

Purpose: We sought to identify predictive biomarkers for a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor.

Experimental Design: We use a NAMPT inhibitor, GNE-617, to evaluate nicotinic acid rescue status in a panel of more than 400 cancer cell lines. Using correlative analysis and RNA interference (RNAi), we identify a specific biomarker for nicotinic acid rescue status.

View Article and Find Full Text PDF

Although mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK) inhibition is predicted to cause cell death by stabilization of the proapoptotic BH3-only protein BIM, the induction of apoptosis is often modest. To determine if addition of a Bcl-2 family inhibitor could increase the efficacy of a MEK inhibitor, we evaluated a panel of 53 non-small cell lung cancer and pancreatic cancer cell lines with the combination of navitoclax (ABT-263), a Bcl-2/Bcl-xL (BCL2/BCL2L1) antagonist, and a novel MAP kinase (MEK) inhibitor, G-963. The combination is synergistic in the majority of lines, with an enrichment of cell lines harboring KRAS mutations in the high synergy group.

View Article and Find Full Text PDF

This essay provides insight into the daily life of a scientist in biotechnology, drawing on experience gained from working in companies ranging in size from four to more than 80,000 employees. The basic scientific training in molecular biology required for the work is similar between academia and industry, but the way in which these skills are applied differs. Biologists in industry settings work as part of large, multidisciplinary teams.

View Article and Find Full Text PDF

Purpose: Docetaxel is a front-line standard-of-care chemotherapeutic drug for the treatment of breast cancer. Phosphoinositide 3-kinases (PI3K) are lipid kinases that regulate breast tumor cell growth, migration, and survival. The current study was intended to determine whether GDC-0941, an orally bioavailable class I selective PI3K inhibitor, enhances the antitumor activity of docetaxel in human breast cancer models in vitro and in vivo.

View Article and Find Full Text PDF

The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263.

View Article and Find Full Text PDF

To examine the potential of combining Bcl-2 family inhibitors with chemotherapy in ovarian cancer, we evaluated a panel of 27 ovarian cancer cell lines for response to the combination of navitoclax (formerly ABT-263) and paclitaxel or gemcitabine. The majority of cell lines exhibited a greater than additive response to either combination, as determined by the Bliss independence model, and more than 50% of the ovarian cell lines exhibited strong synergy for the navitoclax/paclitaxel combination. To identify biomarkers for tumors likely to respond to this combination, we evaluated the protein levels of intrinsic apoptosis pathway components.

View Article and Find Full Text PDF

During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs).

View Article and Find Full Text PDF

Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms.

View Article and Find Full Text PDF

Purpose: To explore the potential of navitoclax in combination with taxane-based chemotherapy in the treatment of non-small cell lung cancer (NSCLC) by defining mechanism of synergy and identifying correlative biomarkers.

Experimental Design: We treated a panel of NSCLC lines with a dose matrix of paclitaxel and navitoclax (formerly ABT-263), an inhibitor of Bcl-2, Bcl-x(L), and Bcl-w (1), and evaluated synergy. We next used time-lapse microscopy to explore mechanism of synergy.

View Article and Find Full Text PDF

Members of the kinesin-8 motor class have the remarkable ability to both walk towards microtubule plus-ends and depolymerise these ends on arrival, thereby regulating microtubule length. To analyse how kinesin-8 multitasks, we studied the structure and function of the kinesin-8 motor domain. We determined the first crystal structure of a kinesin-8 and used cryo-electron microscopy to calculate the structure of the microtubule-bound motor.

View Article and Find Full Text PDF

Taxanes are very effective at causing mitotic arrest; however, there is variability among cancer cells in the apoptotic response to mitotic arrest. The variability in clinical efficacy of taxane-based therapy is likely a reflection of this variability in apoptotic response, thus elucidation of the molecular mechanism of the apoptotic response to mitotic stress could lead to improved clinical strategies. To identify genes whose expression influences the rate and extent of apoptosis after mitotic arrest, we screened a kinase-enriched small interfering RNA library for effects on caspase activation in response to maximally effective doses of paclitaxel, a PLK1 inhibitor, or cisplatin.

View Article and Find Full Text PDF

Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.

View Article and Find Full Text PDF

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules.

View Article and Find Full Text PDF

Kinesins, mechanochemical enzymes that utilize the energy of ATP to translocate along or destabilize microtubules, are essential for accurate completion of cell division. Recently, small moleculer inhibitors of one kinesin, kinesin spindle protein (KSP/Eg5/kinesin5), have been shown to be efficacious in pre-clinical studies, with one quinazolinone-based inhibitor advancing to Phase II clinical trials as a potential anticancer chemotherapeutic agent. This highlights the potential of KSP and other mitotic kinesins as targets for chemotherapeutic intervention.

View Article and Find Full Text PDF