The target of rapamycin (TOR) pathway is a major regulator of growth in all eukaryotes, integrating energy, nutrient and stress signals into molecular decisions. By using large-scale MS-based metabolite profiling of primary, secondary and lipid compounds in combination with array-based transcript profiling, we show that the TOR protein not only regulates growth but also influences nutrient partitioning and central energy metabolism. The study was performed on plants exhibiting conditional down-regulation of AtTOR expression, revealing strong regulation of genes involved in pathways such as the cell cycle, cell-wall modifications and senescence, together with major changes in transcripts and metabolites of the primary and secondary metabolism.
View Article and Find Full Text PDF