This study reports a facile technique to synthesize and tune the cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (PAPTAC), in terms of molecular weight and surface change for harvesting three microalgae species (Scenedesmus sp., P.purpureum, and C.
View Article and Find Full Text PDFThe interplay between CO input and light intensity is investigated to provide new insight to optimise microalgae growth rate in photobioreactors for environmental remediation, carbon capture, and biomass production. Little is known about the combined effect of carbon metabolism and light intensity on microalgae growth. In this study, carbonated water was transferred to the microalgae culture at different rates and under different light intensities for observing the carbon composition and growth rate.
View Article and Find Full Text PDFSci Total Environ
September 2022
The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments.
View Article and Find Full Text PDF