Variability and modification of the symptoms of Huntington’s disease (HD) are commonly observed in both patient populations and animal models of the disease. Utilizing a stable line of the R6/2 HD mouse model, the present study investigated the role of genetic background in the onset and severity of HD symptoms in a transgenic mouse. R6/2 congenic C57BL/6J and C57BL/6J×DBA/2J F1 (B6D2F1) mice were evaluated for survival and a number of behavioral phenotypes.
View Article and Find Full Text PDFIn the present study we report on the use of speed congenics to generate a C57BL/6J congenic line of HD-model R6/2 mice carrying 110 CAG repeats, which uniquely exhibits minimal intergenerational instability. We also report the first identification of the R6/2 transgene insertion site. The relatively stable line of 110 CAG R6/2 mice was characterized for the onset of behavioral impairments in motor, cognitive and psychiatric-related phenotypes as well as the progression of disease-related impairments from 4 to 10 weeks of age.
View Article and Find Full Text PDFIntroduction: The G-protein coupled muscarinic acetylcholine receptors, widely expressed in the CNS, have been implicated in fragile X syndrome (FXS). Recent studies have reported an overactive signaling through the muscarinic receptors in the Fmr1KO mouse model. Hence, it was hypothesized that reducing muscarinic signaling might modulate behavioral phenotypes in the Fmr1KO mice.
View Article and Find Full Text PDFMuscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors (M1-M5), grouped together into two functional classes, based on their G protein interaction. Although ubiquitously expressed in the CNS, the M4 protein shows highest expression in the neostriatum, cortex, and hippocampus. Electrophysiological and biochemical studies have provided evidence for overactive mAChR signaling in the fragile X knock-out (Fmr1KO) mouse model, and this has been hypothesized to contribute to the phenotypes seen in Fmr1KO mice.
View Article and Find Full Text PDFRationale: Studies in the Fmr1 knockout (KO) mouse, a model of fragile X syndrome (FXS), suggest that excessive signaling through group I metabotropic glutamate receptors (mGluRs), comprised of subtypes mGluR1 and mGluR5, may play a role in the pathogenesis of FXS. Currently, no studies have assessed the effect of mGluR1 modulation on Fmr1 KO behavior, and there has not been an extensive behavioral analysis of mGluR5 manipulation in Fmr1 KO mice.
Objectives: The goals for this study were to determine if pharmacologic blockade of mGluR1 may affect Fmr1 KO behavior as well as to expand on the current literature regarding pharmacologic blockade of mGluR5 on Fmr1 KO behavior.
Introduction: Genetic heterogeneity likely contributes to variability in the symptoms among individuals with fragile X syndrome (FXS). Studies in the Fmr1 knockout (KO) mouse model for FXS suggest that excessive signaling through group I metabotropic glutamate receptors (Gp1 mGluRs), comprised of subtypes mGluR1 and mGluR5, may play a role. Hence, Gp1 mGluRs may act as modifiers of FXS.
View Article and Find Full Text PDFRationale: Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors, widely expressed in the CNS. Electrophysiological and molecular studies have provided evidence for overactive M1 receptor signaling in the fragile X knockout (Fmr1 KO) mouse model, suggesting the involvement of the M1 receptors in fragile X syndrome. Overactive signaling through the M1 receptor has been hypothesized to contribute to the phenotypes seen in fragile X mice.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) diagnoses are behaviorally based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach.
View Article and Find Full Text PDFThe mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein.
View Article and Find Full Text PDFRationale: An increasing number of investigators utilize the marble-burying assay despite the paucity of information available regarding what underlies the behavior.
Objectives: We tested the possibility that a genetic component underlies marble burying in mice and if there is a genetic correlation with other anxiety-like traits. Since findings reported in the literature indicate that marble-burying behavior reflects an anxiety-like response, we explored the assumption that the novel nature of a marble induces this anxiety.
Fragile X syndrome is caused by a CGG trinucleotide repeat expansion of the FMR1 gene. Individuals with fragile X display several behavioral abnormalities including hyperactivity, social anxiety, autistic-like features, impaired cognitive processing, and impaired sensorimotor gating. The Fmr1KO mouse model of fragile X exhibits several related behavioral phenotypes such as increased activity and altered social interactions.
View Article and Find Full Text PDFFragile X syndrome (FXS) results from the loss of expression of the fragile X mental retardation (FMR1) gene. Individuals affected by FXS experience many behavioral problems, including cognitive impairment, hyperactivity, social anxiety, and autistic-like behaviors. A mouse model of Fmr1 deficiency (Fmr1KO) exhibits several similar behavioral phenotypes, including alterations in social behavior.
View Article and Find Full Text PDFSmith-Magenis syndrome (SMS) is associated with an approximately 3.7 Mb common deletion in 17p11.2 and characterized by its craniofacial and neurobehavioral abnormalities.
View Article and Find Full Text PDFIndividuals affected by Fragile X syndrome (FXS) experience cognitive impairment, hyperactivity, attention deficits, social anxiety and autistic-like behaviors. FXS results from the loss of expression of the Fragile X mental retardation (FMR1) gene, whose protein product FMRP is thought to play an important role in neuronal function and synaptic plasticity. Two paralogs of FMRP, FXR1P and FXR2P, have been identified, forming the Fragile X-related (FXR) family of proteins.
View Article and Find Full Text PDFTest batteries are commonly used to assess the behavioral phenotype of genetically modified and inbred strains of mice. However, few systematic studies have been employed to address several key issues concerning the use of a test battery. The current study was designed to address whether inter-test interval affects behavioral performance.
View Article and Find Full Text PDFFragile X syndrome is a common form of mental retardation caused by the absence of the FMR1 protein, FMRP. Fmr1 knockout mice exhibit a phenotype with some similarities to humans, such as macro-orchidism and behavioral abnormalities. Two homologs of FMRP have been identified, FXR1P and FXR2P.
View Article and Find Full Text PDF