Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are contaminants of concern in the New York/New Jersey Harbor and in the organisms of the Newtown Creek Superfund site, which lies within the harbor. Because PCDD/Fs are never intentionally produced, identifying their sources can be challenging. In this work, sources of PCDD/Fs to the sediment of Newtown Creek were investigated using Positive Matrix Factorization (PMF) to analyze two data sets containing data on concentrations of (1) PCDD/Fs and (2) PCDD/Fs plus polychlorinated biphenyls (PCBs).
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are a primary contaminant of potential concern at the Newtown Creek superfund site. Measurements of PCBs in hundreds of samples of sediment (surface and cores) within Newtown Creek and at nearby reference locations were obtained from the Remedial Investigation (RI) databases. This data set was analyzed using Positive Matrix Factorization (PMF).
View Article and Find Full Text PDFTo understand sources and processes affecting per- and polyfluoroalkyl substances (PFAS), 32 PFAS were measured in landfill leachate from 17 landfills across Washington State in both pre-and post-total oxidizable precursor (TOP) assay samples, using an analytical method that was the precursor to EPA Draft Method 1633. As in other studies, 5:3FTCA was the dominant PFAS in the leachate, suggesting that carpets, textiles, and food packaging were the main sources of PFAS. Total PFAS concentrations (ΣPFAS) ranged from 61 to 172,976 ng/L and 580-36,122 ng/L in pre-TOP and post-TOP samples, respectively, suggesting that little or no uncharacterized precursors remained in landfill leachate.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are persistent, bioaccumulative, and toxic chemicals that are the dominant contaminant in the Upper Hudson River (UHR) in New York State where two General Electric (GE) plants historically discharged PCBs to the river. Portions of the UHR were dredged from 2009 to 2015 to address PCB contamination. In 2017, the first post-dredging survey of yearling feeder fish and sediment PCB contamination was conducted to establish a baseline for the recovery of the river.
View Article and Find Full Text PDFThe Spokane River is impacted by levels of polychlorinated biphenyls (PCBs) that have triggered fish consumption advisories and exceed water quality standards. Select wastewater treatment plants (WWTPs) on the river have been upgraded from secondary (biological) treatment to tertiary treatment in the form of membrane filtration to address phosphorus contamination. Because membrane filtration is effective at removing particles, it is likely to reduce PCB concentrations in the effluent as well.
View Article and Find Full Text PDFDue to the complex sources and fate of perfluoroalkyl substance (PFAS), their source apportionment in the environment remains a challenge. A data set of 11 straight-chain PFAS in 139 samples of fish in the Great Lakes was analyzed using positive matrix factorization (PMF) to investigate their primary sources, whose spatial variations were examined against the surrounding environmental factors. PMF analysis produced five fingerprints.
View Article and Find Full Text PDFThe Upper Hudson River (UHR) has been contaminated with polychlorinated biphenyls (PCBs) since the 1940s due to the manufacture of capacitors at two plants near Hudson Falls and Fort Edward, NY by General Electric (GE). Dredging of portions of the UHR was conducted from 2009 to 2015 as a partial remedy for this contamination. In 2017, the New York State Department of Environmental Conservation undertook a comprehensive post-dredging survey of sediment contamination in the UHR.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) have become the dominating burden in the Arctic ecosystems, but their transport pathways and relative importance of different sources in the Arctic remained unclear, and this would be further complicated by climate change. Here we interpreted 27 PAHs in 34 surface sediments from the northern Bering-Chukchi margin. We integrated source apportionment methods (including diagnostic ratios, principal component analysis, hierarchical analysis, and positive matrix factorization (PMF) model) together with geochemistry parameters, which reveal a gradually clear picture of the spatial patterns of different sources.
View Article and Find Full Text PDFAlthough perfluoroalkyl substances (PFASs) are ubiquitous in the Arctic, their dominant pathways to the Arctic remain unclear. Most modeling studies support major oceanic transport for PFASs in the Arctic seawater, but this conclusion contradicts the rapid response of PFASs to global emissions in some biota species. Sediments, which act as important PFAS sinks for seawater and potential PFAS source to the benthic food web, are important for interpreting the fate of PFASs in the Arctic.
View Article and Find Full Text PDFAtmospheric deposition can be an important pathway for the delivery of toxic polychlorinated biphenyls (PCBs) to ecosystems, especially in remote areas. Determining the sources of atmospheric PCBs can be difficult, because PCBs may travel long distances to reach the monitoring location, allowing for a variety of weathering processes that may alter PCB fingerprints. Previous efforts to determine the sources of atmospheric PCBs have been hampered by the electron capture detection methods used to measure PCBs.
View Article and Find Full Text PDFIn order to understand the sources and fate of polychlorinated biphenyls (PCBs) in several species of benthic biota, including clams (Corbicula fluminea), oligochaetes (Lumbriculus variegatus), and mussels (Margaritifera falcata and Anodonta nuttalliana) at the Portland Harbor Superfund Site (PHSS), their congener fingerprints were examined. First, diagnostic ratios of congeners known to be metabolizable vs. recalcitrant in the cytochrome P450 (CYP) pathway were significantly lower in biota than in its co-located sediment, indicating metabolism may have occurred.
View Article and Find Full Text PDFSediments of combined sewers are seeded with microbes from a variety of sources, and experience varying biogeochemical conditions. A variety of redox processes have been demonstrated to occur within sewer systems, as well as transformation of several recalcitrant xenobiotic contaminants. Illumina sequencing of the 16S ribosomal RNA gene from sediments of three combined sewer systems in the northeastern United States resulted in 10 000 to 47 000 operational taxonomic units per sample.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are persistent, toxic and bioaccumulative pollutants. One of the few pathways via which they break down is microbial dechlorination, which has been shown to occur in sewers. Questions remain about where within sewers this process takes place and which conditions encourage dechlorination.
View Article and Find Full Text PDFChlorinated benzenes are common groundwater contaminants in the United States, so demonstrating whether they undergo degradation in the subsurface is important in determining the best remedy for this contamination. The purpose of this work was to use a new data mining approach to investigate chlorinated benzene degradation pathways in the subsurface. Positive Matrix Factorization (PMF) was used to analyze long-term measurements of chlorinated benzene concentrations in groundwater at a contaminated site in New Jersey.
View Article and Find Full Text PDFPolychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are persistent organic pollutants whose main removal process in the environment is due to biodegradation, and particularly anaerobic reductive dechlorination. Since PCDD/F congeners that are substituted in the lateral 2, 3, 7, and 8 positions are the most toxic, removal of these chlorines is advantageous, but previous studies have only demonstrated their removal under laboratory conditions. We evaluated a concentration data set of PCDD/F congeners with four or more chlorines along with all 209 polychlorinated biphenyl (PCB) congeners in surface water, treated and untreated wastewater, landfill leachate, and biosolids (NY CARP data set) to determine whether peri and peri/lateral dechlorination of PCDD/Fs occurs in these environments.
View Article and Find Full Text PDFConcentrations of polychlorinated biphenyls (PCBs) in the Delaware River currently exceed the Water Quality Criteria of 16 pg/L for the sum of PCBs due in part to atmospheric deposition. The purpose of this work was to use a source apportionment tool called Positive Matrix Factorization (PMF) to identify the sources of PCBs to the atmosphere in this area and determine whether their concentrations are declining over time. The data set was compiled by the Delaware Atmospheric Deposition Network (DADN) from samples taken in Camden, NJ from 1999 to 2011 and New Brunswick, NJ from 1997 to 2011.
View Article and Find Full Text PDFUsing dated sediment cores, polychlorinated biphenyl (PCB) congener concentrations in the New York/New Jersey Harbor and Lower Hudson River were investigated using Positive Matrix Factorization. Of the seven factors resolved, six represent Aroclors in various stages of weathering. Factor 1 resembles Aroclor 1242 and is consistent with the Upper Hudson River PCB signal associated with the General Electric capacitor plants near Hudson Falls, NY.
View Article and Find Full Text PDFThe Portland Harbor (Oregon, USA) has been declared a "Superfund" site because it is impacted by a variety of contaminants, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs). Using data collected in the remedial investigation, concentrations of PCBs and PCDD/Fs in sediment and water were examined using positive matrix factorization to look for evidence that PCBs and PCDD/Fs are dechlorinated by anaerobic bacteria. This process has long been known to occur in sediments.
View Article and Find Full Text PDFIt is well-known that absorption, distribution, metabolism, and excretion (ADME) processes in fish can alter polychlorinated biphenyl (PCB) congener patterns in fish, but these patterns have never been investigated using an advanced source-apportionment tool. In this work, PCB congener patterns in freshwater fish were examined with positive matrix factorization (PMF). PCB congeners were quantified via EPA Method 1668 in fillet and carcass of six species in four study areas in the Columbia River near the Hanford Site.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2015
Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g.
View Article and Find Full Text PDFThe non-Aroclor congener 3,3'-dichlorobiphenyl (PCB 11) has been recently detected in air, water, sediment, and biota. It has been known since at least the 1970s that this congener is produced inadvertently during the production of certain organic pigments. PCB 11 was previously measured at parts-per-billion (ppb) levels in various printed materials obtained in the US.
View Article and Find Full Text PDFBrominated diphenyl ethers (BDEs) are flame retardant compounds that have been classified as persistent organic pollutants under the Stockholm Convention and targeted for phase-out. Despite their classification as persistent, PBDEs undergo debromination in the environment, via both microbial and photochemical pathways. We examined concentrations of 24 PBDE congeners in 233 sediment samples from San Francisco Bay using Positive Matrix Factorization (PMF).
View Article and Find Full Text PDFA mixed culture containing Dehalococcoides mccartyi strain 195 dechlorinated 1,2,3,7,8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD) and selected polychlorinated biphenyl (PCB) congeners in Aroclors 1260, 1254 and 1242. 1,2,3,7,8-PeCDD was dechlorinated to 1,3,7-trichlorodibenzo-p-dioxin (1,3,7-TrCDD) and/or 1,3,8-TrCDD via 1,3,7,8-tetrachlorodibenzo-p-dioxin (1,3,7,8-TeCDD), a pathway that excludes the production of the toxic congener 2,3,7,8-TeCDD. Dechlorination rate and extent was greatly enhanced by the addition of 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB) as an alternate halogenated substrate and/or incubation temperature increase from 25 °C to 35 °C.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are toxic, persistent, bioaccumulative compounds that threaten water quality in many areas, including the Delaware River. In 2003, total maximum daily loads for PCBs were promulgated for the tidal portion of the river, requiring the collection of a massive and unprecedented data set on PCBs in an urban estuary using state of the art, high-resolution high mass spectrometry (EPA method 1668 revision A). In previous publications, this data set has been examined using positive matrix factorization (PMF) to apportion PCB sources in the air, water, and permitted discharges to the river.
View Article and Find Full Text PDF