Reading disability (RD), which affects between 5 and 17% of the population worldwide, is the most prevalent form of learning disability, and is associated with underactivation of a universal reading network in children. However, recent research suggests there are differences in learning rates on cognitive predictors of reading performance, as well as differences in activation patterns within the reading neural network, based on orthographic depth (i.e.
View Article and Find Full Text PDFDyslexia is a common learning disability that affects processing of written language despite adequate intelligence and educational background. If learning disabilities remain untreated, a child may experience long-term social and emotional problems, which influence future success in all aspects of their life. Dyslexia has a 60% heritability rate, and genetic studies have identified multiple dyslexia susceptibility genes (DSGs).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
The use of an individual's neural response to stimuli (the event-related potential or ERP) has potential as a biometric because it is highly resistant to fraud relative to other conventional authentication systems. P300 is an ERP in human electroencephalography (EEG) that occurs in response to an oddball stimulus when an individual is actively engaged in a target detection task. Because P300 is consistently detectable from almost every subject, it is considered a potential signal for biometric applications.
View Article and Find Full Text PDFDirect relationships between induced mutation in the DCDC2 candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and whether children with reading impairment showed a similar impairment to animal models of the disorder (study 2). Study 1 included 37 participants who completed six trials of four different virtual Hebb-Williams maze configurations.
View Article and Find Full Text PDFHuman neocortical molecular layer heterotopia consist of aggregations of hundreds of neurons and glia in the molecular layer (layer I) and are indicative of neuronal migration defect. Despite having been associated with dyslexia, epilepsy, cobblestone lissencephaly, polymicrogyria, and Fukuyama muscular dystrophy, a complete understanding of the cellular and axonal constituents of molecular layer heterotopia is lacking. Using a mouse model, we identify diverse excitatory and inhibitory neurons as well as glia in heterotopia based on molecular profiles.
View Article and Find Full Text PDFAbnormal development of the cerebellum is often associated with disorders of movement, postural control, and motor learning. Rodent models are widely used to study normal and abnormal cerebellar development and have revealed the roles of many important genetic and environmental factors. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia, a malformation of neuronal migration, in the cerebellar vermis of C57BL/6 mice and closely-related strains.
View Article and Find Full Text PDFMalformations of cortical development (MCD) are linked to epilepsy in humans. MCD encompass a broad spectrum of malformations, which occur as the principal pathology or a secondary disruption. Recently, Rosen et al.
View Article and Find Full Text PDFAbnormal development of the neocortex is often associated with cognitive deficits and epilepsy. Rodent models are widely used to study normal and abnormal cortical development and have revealed the roles of many important genetic and environmental factors. Interestingly, several inbred mouse strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations including C57BL/6J mice, which are among the most widely utilized mice.
View Article and Find Full Text PDFFocal cortical dysplasia (FCD) are associated with neurological disorders and cognitive impairments in humans. Molecular layer ectopia, clusters of misplaced cells in layer I of the neocortex, have been identified in patients with developmental dyslexia and psychomotor retardation. Mouse models of this developmental disorder display behavioral impairments and increased seizure susceptibility.
View Article and Find Full Text PDFReading Disability (RD) is a significant impairment in reading accuracy, speed and/or comprehension despite adequate intelligence and educational opportunity. RD affects 5-12% of readers, has a well-established genetic risk, and is of unknown neurobiological cause or causes. In this review we discuss recent findings that revealed neuroanatomic anomalies in RD, studies that identified 3 candidate genes (KIAA0319, DYX1C1, and DCDC2), and compelling evidence that potentially link the function of candidate genes to the neuroanatomic anomalies.
View Article and Find Full Text PDFFragile X syndrome is the most common form of inherited mental retardation and is caused by the loss of function of the Fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein thought to play a key role in protein synthesis-dependent synaptic plasticity. The regulation of FMRP expression itself is also likely to be an important control point in this process.
View Article and Find Full Text PDFCortical dysplasias are associated with both epilepsy and cognitive impairments in humans. Similarly, several animal models of cortical dysplasia show that dysplasia causes increased seizure susceptibility and behavioral deficits in vivo and increased levels of excitability in vitro. As most current animal models involve either global disruptions in cortical architecture or the induction of lesions, it is not yet clear whether small spontaneous neocortical malformations are also associated with increased excitability or seizure susceptibility.
View Article and Find Full Text PDF