Publications by authors named "Lisa A Carmody"

Treatment-associated differences in Pseudomonas aeruginosa (Pa) density in sputum have been used as a response biomarker in clinical trials of cystic fibrosis (CF) therapies. Although most studies have included placebo-treated groups as comparators, variability of Pa density in untreated individuals has rarely been reported. We measured day-to-day differences in Pa density in 267 sputum sample pairs collected from 13 adults with CF during days in which no changes in antibiotic therapy occurred.

View Article and Find Full Text PDF

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. Understanding PEx ecology is challenged by high inter-patient variability in airway microbial community profiles.

View Article and Find Full Text PDF

Rates of viral respiratory infection (VRI) are similar in people with cystic fibrosis (CF) and the general population; however, the associations between VRI and CF pulmonary exacerbations (PEx) require further elucidation. To determine VRI prevalence during CF PEx and evaluate associations between VRI, clinical presentation, and treatment response. The STOP2 (Standardized Treatment of Pulmonary Exacerbations II) study was a multicenter randomized trial to evaluate different durations of intravenous antibiotic therapy for PEx.

View Article and Find Full Text PDF

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease (COPD). Intermittent pulmonary exacerbations (PEx) in these conditions are associated with lung function decline and higher mortality rates. An understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in airway microbial community profiles.

View Article and Find Full Text PDF

Background: Home spirometry is increasingly used to monitor lung function in people with cystic fibrosis (pwCF). Although decreases in lung function in the setting of increased respiratory symptoms are consistent with a pulmonary exacerbation (PEx), the interpretation of home spirometry during asymptomatic periods of baseline health is unclear. The aims of this study were to determine the variation in home spirometry in pwCF during asymptomatic periods of baseline health and to identify associations between this variation and PEx.

View Article and Find Full Text PDF

Background: The progression of lung disease in people with cystic fibrosis (pwCF) has been associated with a decrease in the diversity of airway bacterial communities. How often low diversity communities occur in advanced CF lung disease and how they may be associated with clinical outcomes is not clear, however.

Methods: We sequenced a region of the bacterial 16S ribosomal RNA gene to characterize bacterial communities in sputum from 190 pwCF with advanced lung disease (FEV≤40% predicted), with particular attention to the prevalence and relative abundance of dominant genera.

View Article and Find Full Text PDF

Chronic polymicrobial airway infections are a hallmark of cystic fibrosis (CF) lung disease. Antibiotic therapy is a primary treatment of CF pulmonary exacerbations (PEx); however, the impact of episodic antibiotic treatment on airway bacterial communities has not been well described. We analyzed sputum samples from adults with CF obtained immediately before and during antibiotic treatment of PEx.

View Article and Find Full Text PDF

Bacterial infection and inflammation of the airways are the leading causes of morbidity and mortality in persons with cystic fibrosis (CF). The ecology of the bacterial communities inhabiting CF airways is poorly understood, especially with respect to how community structure, dynamics, and microbial metabolic activity relate to clinical outcomes. In this study, the bacterial communities in 818 sputum samples from 109 persons with CF were analyzed by sequencing bacterial 16S rRNA gene amplicons.

View Article and Find Full Text PDF

Culture-independent studies of the cystic fibrosis (CF) airway microbiome typically rely on expectorated sputum to assess the microbial makeup of lower airways. These studies have revealed rich bacterial communities. There is often considerable overlap between taxa observed in sputum and those observed in saliva, raising questions about the reliability of expectorated sputum as a sample representing lower airway microbiota.

View Article and Find Full Text PDF

Differences in cystic fibrosis (CF) airway microbiota between periods of clinical stability and exacerbation of respiratory symptoms have been investigated in efforts to better understand microbial triggers of CF exacerbations. Prior studies have often relied on a single sample or a limited number of samples to represent airway microbiota. However, the variability in airway microbiota during periods of clinical stability is not well known.

View Article and Find Full Text PDF

Bacteria that infect the airways of persons with cystic fibrosis (CF) include a group of well-described opportunistic pathogens as well as numerous, mainly obligate or facultative anaerobic species typically not reported by standard sputum culture. We sequenced the V3-V5 hypervariable region of the bacterial 16S rRNA gene in DNA derived from 631 sputum specimens collected from 111 CF patients over 10 years. We describe fluctuations in the relative abundances of typical CF pathogens, as well as anaerobic species, in relation to changes in patients' clinical state and lung disease stage.

View Article and Find Full Text PDF

Respiratory tract infections with nontuberculous mycobacteria (NTM) are increasing in prevalence and are a significant cause of lung function decline in individuals with cystic fibrosis (CF). NTM have been detected in culture-independent analyses of CF airway microbiota at lower rates than would be expected based on published prevalence data, likely due to poor lysing of the NTM cell wall during DNA extraction. We compared a standard bacterial lysis protocol with a modified method by measuring NTM DNA extraction by qPCR and NTM detection with bacterial 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is characterized by chronic infection and inflammation of the airways. In vitro culture of select bacterial species from respiratory specimens has been used to guide antimicrobial therapy in CF for the past few decades. More recently, DNA sequence-based, culture-independent approaches have been used to assess CF airway microbiology, although the role that these methods will (or should) have in routine microbiologic analysis of CF respiratory specimens is unclear.

View Article and Find Full Text PDF

Background: Recent work indicates that the airways of persons with cystic fibrosis (CF) typically harbor complex bacterial communities. However, the day-to-day stability of these communities is unknown. Further, airway community dynamics during the days corresponding to the onset of symptoms of respiratory exacerbation have not been studied.

View Article and Find Full Text PDF

Background: Although recent studies have begun to elucidate how airway microbial community structure relates to lung disease in cystic fibrosis (CF), microbial community activity and the host's response to changes in this activity are poorly understood. Metabolomic profiling provides a means to investigate microbial activity and human cell activity within diseased airways. However, variables in sample storage and shipping likely affect downstream analyses and standards for sample handling are lacking.

View Article and Find Full Text PDF

Rationale: In persons with cystic fibrosis (CF), repeated exacerbations of pulmonary symptoms are associated with a progressive decline in lung function. Changes in the airway microbiota around the time of exacerbations are not well understood.

Objectives: To characterize changes in airway bacterial communities around the time of exacerbations and to identify predictors for these changes.

View Article and Find Full Text PDF

The structure and dynamics of bacterial communities in the airways of persons with cystic fibrosis (CF) remain largely unknown. We characterized the bacterial communities in 126 sputum samples representing serial collections spanning 8-9 y from six age-matched male CF patients. Sputum DNA was analyzed by bar-coded pyrosequencing of the V3-V5 hypervariable region of the 16S rRNA gene, defining 662 operational taxonomic units (OTUs) from >633,000 sequences.

View Article and Find Full Text PDF

Staphylococcus aureus is a common constituent of the bacterial community inhabiting the airways of persons with cystic fibrosis (CF). Culture-independent studies have shown that this species is often present in relatively high abundance and would therefore be expected to exert a pronounced effect on measures of CF airway bacterial community structure. We investigated the impact of DNA extraction method on pyrosequencing-based measures of Staphylococcus abundance and bacterial community structure in 17 sputum samples from five CF patients.

View Article and Find Full Text PDF

Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections.

View Article and Find Full Text PDF

Standard microbiology references describe Stenotrophomonas maltophilia as oxidase negative and variable with respect to utilization of lactose and sucrose. Analysis of a collection of 766 S. maltophilia isolates indicated that approximately 20% are oxidase positive and that this species should be reevaluated for other phenotypes, including oxidative fermentation of lactose and sucrose.

View Article and Find Full Text PDF

The therapeutic potential of bacteriophages (phages) in a mouse model of acute Burkholderia cenocepacia pulmonary infection was assessed. Phage treatment was administered by either intranasal inhalation or intraperitoneal injection. Bacterial density, macrophage inflammatory protein 2 (MIP-2), and tumor necrosis factor alpha (TNF-alpha) levels were significantly reduced in lungs of mice treated with intraperitoneal phages (P < .

View Article and Find Full Text PDF

Burkholderia cenocepacia is an important respiratory pathogen in persons with cystic fibrosis (CF). Recent studies indicate that B. cenocepacia survives within macrophages and airway epithelial cells in vitro by evading endosome-lysosome fusion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: