High-affinity potassium (K+) transporter (HAK)/K+ uptake permease (KUP)/K+ transporter (KT) have been identified in all genome-sequenced terrestrial plants. They play an important role in K+ acquisition and translocation and in enhancing salt tolerance. Here, we report that plasma membrane-located OsHAK18 functions in K+ and sodium (Na+) circulation and sugar translocation in rice (Oryza sativa).
View Article and Find Full Text PDFTo investigate K absorption and transport mechanisms by which pear rootstock genotypes respond to low-K stress, seedlings of a potassium-efficient pear rootstock, Pyrus ussuriensis, and a potassium-sensitive rootstock, Pyrus betulifolia, were supplied with different K concentrations in solution culture. Significant differences in the absorption rate, V and K between the genotypes indicate that P. ussuriensis acclimatizes more readily to low-K stress by regulating its absorption and internal cycling.
View Article and Find Full Text PDFNutrient stress as abiotic stress has become one of the important factors restricting crop yield and quality. DNA methylation is an essential epigenetic modification that can effectively regulate genome stability. Exploring DNA methylation responses to nutrient stress could lay the foundation for improving plant tolerance to nutrient stress.
View Article and Find Full Text PDFPotassium (K) deficiency is a common abiotic stress that can inhibit the growth of fruit and thus reduce crop yields. Little research has been conducted on pear transcriptional changes under low and high K conditions. Here, we performed an experiment with 7-year-old pot-grown "Huangguan" pear trees treated with low, Control or high K levels (0, 0.
View Article and Find Full Text PDF