Multiple lines of evidence suggest that Bordetella species have a significant life stage outside of the mammalian respiratory tract that has yet to be defined. The Bordetella virulence gene (BvgAS) two-component system, a paradigm for a global virulence regulon, controls the expression of many "virulence factors" expressed in the Bvg positive (Bvg+) phase that are necessary for successful respiratory tract infection. A similarly large set of highly conserved genes are expressed under Bvg negative (Bvg-) phase growth conditions; however, these appear to be primarily expressed outside of the host and are thus hypothesized to be important in an undefined extrahost reservoir.
View Article and Find Full Text PDFThe Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B.
View Article and Find Full Text PDFThe classical bordetellae are comprised of three subspecies that differ from broad to very limited host specificity. Although several lineages appear to have specialized to particular host species, most retain the ability to colonize and grow in mice, providing a powerful common experimental model to study their differences. One of the subspecies, Bordetella parapertussis, is composed of two distinct clades that have specialized to different hosts: one to humans (Bpphu), and the other to sheep (Bppov).
View Article and Find Full Text PDFInterleukin-1 receptor-deficient (IL-1R(-/-)) mice are healthy despite being colonized by commensal microbes but are defective in defenses against specific pathogens, suggesting that IL-1R-mediated effects contribute to immune responses against specific pathogenic mechanisms. To better define the role of IL-1R in immunity to respiratory infections, we challenged IL-1R(-/-) mice with Bordetella pertussis and Bordetella parapertussis, the causative agents of whooping cough. Following inoculation with B.
View Article and Find Full Text PDF