Publications by authors named "Liron Agmon"

Understanding atomic friction within a liquid environment is crucial for engineering friction mechanisms and characterizing surfaces. It has been suggested that the lattice resolution of friction force microscope in liquid environments stems from a dry contact state, with all liquid molecules expelled from the area of closest approach between the tip and substrate. Here, we revisit this assertion by performing in-depth friction force microscopy experiments and molecular dynamics simulations of the influence of surrounding water molecules on the dynamic behavior of the nanotribological contact between an amorphous SiO probe and a monolayer MoS substrate.

View Article and Find Full Text PDF

Friction force microscopy (FFM) in aqueous environments has recently proven to be a very effective method for lattice-resolution imaging of crystal surfaces. Here we demonstrate the use of ethanol for similar measurements on water-soluble materials. Lattice resolved frictional stick-slip traces of a cleaved NaCl(100) surface submerged in ethanol are compared with previous obtained FFM results in ultrahigh vacuum (UHV).

View Article and Find Full Text PDF