Background: Accurate segmentation of liver tumor regions in medical images is of great significance for clinical diagnosis and the planning of surgical treatments. Recent advancements in machine learning have shown that convolutional neural networks are powerful in such image processing while largely reducing human labor. However, the variable shape, fuzzy boundary, and discontinuous tumor region of liver tumors in medical images bring great challenges to accurate segmentation.
View Article and Find Full Text PDFMedical image segmentation of the liver is an important prerequisite for clinical diagnosis and evaluation of liver cancer. For automatic liver segmentation from Computed Tomography (CT) images, we proposed a Multi-scale Feature Extraction and Enhancement U-Net (mfeeU-Net), incorporating Res2Net blocks, Squeeze-and-Excitation (SE) blocks, and Edge Attention (EA) blocks. The Res2Net blocks which are conducive to extracting multi-scale features of the liver were used as the backbone of the encoder, while the SE blocks were also added to the encoder to enhance channel information.
View Article and Find Full Text PDF