Publications by authors named "Liras M"

The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies.

View Article and Find Full Text PDF

Charge-transfer complex formation within the pores of porous polymers is an efficient way to tune their electronical properties. Introduction of electron accepting guests to the electron donating hosts to conduct their p-doping is intensively studied in this context. However, the vice versa scenario, n-doping by treating the electron deficient (i.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are appealing candidate materials to design new photoelectrodes for use in solar energy conversion because of their modular nature and chemical versatility. However, to date there are few examples of MOFs that can be directly used as photoelectrodes, for which they must be able to afford charge separation upon light absorption, and promote the catalytic dissociation of water molecules, while maintaining structural integrity. Here, we have explored the use of the organic linker anthraquinone-2, 6-disulfonate (2, 6-AQDS) for the preparation of MOFs to be used as photoanodes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of isonitriles as precursors for producing alkyl radicals through light-mediated hydro- and deuterodeamination reactions, highlighting their scalability and broad functional group compatibility.
  • The method works effectively for different types of alkyl isonitriles (primary, secondary, and tertiary), producing high yields through direct visible-light irradiation with a silyl radical precursor.
  • The presence of an organic photocatalyst (4CzIPN) significantly speeds up the reaction, and detailed mechanistic studies indicate that 4CzIPN can interact with isonitriles via single-electron transfer in their excited state.
View Article and Find Full Text PDF

One of the possible solutions to circumvent the sluggish kinetics, low capacity, and poor integrity of inorganic cathodes commonly used in rechargeable aluminium batteries (RABs) is the use of redox-active polymers as cathodes. They are not only sustainable materials characterised by their structure tunability, but also exhibit a unique ion coordination redox mechanism that makes them versatile ion hosts suitable for voluminous aluminium cation complexes, as demonstrated by the poly(quinoyl) family. Recently, phenazine-based compounds have been found to have high capacity, reversibility and fast redox kinetics in aqueous electrolytes because of the presence of a CN double bond.

View Article and Find Full Text PDF

Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N and HO). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance.

View Article and Find Full Text PDF

Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light-harvesting properties. Besides, their extended π-conjugation provides them with an excellent charge conduction along the whole structure.

View Article and Find Full Text PDF

Background: Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids.

View Article and Find Full Text PDF

Solar fuels production is a cornerstone in the development of emerging sustainable energy conversion and storage technologies. Light-induced H production from water represents one of the most crucial challenges to produce renewable fuel. Metal-organic frameworks (MOFs) are being investigated in this process, due to the ability to assemble new structures with the use of suitable photoactive building blocks.

View Article and Find Full Text PDF

Photocatalysts provide a sustainable way to remove pollutants or store energy in the form of solar fuels by processes such as water splitting and CO2 photoreduction (artificial photosynthesis). Research in this topic is an expansive field evidenced by the large number of contributions published in the past few years. Hybrid photocatalysts based on inorganic semiconductors (ISs) and conjugated polymers (CPs) have emerged as novel promising photoactive materials.

View Article and Find Full Text PDF

New azahelicenes having interesting photophysical properties have been prepared in a four-step sequence. These [7]helicenocarbazoles are efficient blue luminophores, demonstrating the utility of gold catalysis in the preparation of advanced materials.

View Article and Find Full Text PDF

Described herein is a new visible-light photocatalytic strategy for the synthesis of enantioenriched dihydrofurans and cyclopentenes by an intramolecular nitro cyclopropane ring expansion reaction. Mechanistic studies and DFT calculations are used to elucidate the key factors in this new ring expansion reaction, and the need for the nitro group on the cyclopropane.

View Article and Find Full Text PDF

A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered.

View Article and Find Full Text PDF

Water-dispersible upconversion nanoparticles (β-NaYF4:Yb(3+),Er(3+), UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB).

View Article and Find Full Text PDF

Steady-state and time-resolved emission studies on nanohybrids consisting of NaYF4:Yb,Er and a diiodo-substituted Bodipy (UCNP-IBDP) show that the Yb(3+) metastable state, formed after absorption of a near-infrared (NIR) photon, can decay via two competitive energy transfer processes: sensitization of IBDP after absorption of a second NIR photon and population of Er(3+) excited states.

View Article and Find Full Text PDF

We report on the photodynamics of 2-(2'-hydroxyphenyl)benzoxazole (HBO), compared to its amino derivatives, 6-amino-2-(2'-hydroxypheny)benzoxazole (6A-HBO) and 5-amino-2-(2'-hydroxypheny)benzoxazole (5A-HBO) in N,N-dimethylformamide (DMF) solutions. HBO at S0 shows a reversible deprotonation reaction leading to the production of anionic forms. However, for 6A-HBO and 5A-HBO, DMF containing KOH is necessary to produce the anions.

View Article and Find Full Text PDF

We report on spectroscopic and photodynamical behaviours of 5-amino-2-(2'-hydroxyphenyl)benzoxazole (5A-HBO) in different solutions. The dye undergoes an ultrafast ICT reaction (<50 fs) (comparable to that observed for its methylated derivative, 5A-MBO), in agreement with the results of TD-DFT theoretical calculations (gas phase). Depending on the used solvent, the ICT reaction can be followed by a reversible/irreversible excited-state intramolecular proton transfer (ESIPT) reaction or by breaking of the intramolecular hydrogen bond (IHB).

View Article and Find Full Text PDF

We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer.

View Article and Find Full Text PDF

We report on the steady-state, pico- and femtosecond time-resolved emission studies of 6-amino-2-(2-methoxyphenyl)benzoxazole (6A-MBO) and 6-amino-2-(2-hydroxyphenyl)benzoxazole (6A-HBO) in different solvents. We observed an intramolecular charge transfer (ICT) reaction following by slow (relatively) solvent relaxation, which happened in the same time domain for both molecules. The ultrafast ICT reaction happens in 80-140 fs whereas the solvent relaxation occurs in 0.

View Article and Find Full Text PDF

A simple and versatile approach to obtaining patterned surfaces via wrinkle formation with variable dimensions and functionality is described. The method consists of the simultaneous heating and irradiation with UV light of a photosensitive monomer solution confined between two substrates with variable spacer thicknesses. Under these conditions, the system is photo-cross-linked, producing a rapid volume contraction while capillary forces attempt to maintain the contact between the monomer mixture and the cover.

View Article and Find Full Text PDF

We report the preparation of water-dispersible, ca. 30 nm-sized nanohybrids containing NaYF:Er, Yb up-conversion nanoparticles (UCNPs), capped with a polyethylene glycol (PEG) derivative and highly loaded with a singlet oxygen photosensitizer, specifically a diiodo-substituted Bodipy (IBDP). The photosensitizer, bearing a carboxylic group, was anchored to the UCNP surface and, at the same time, embedded in the PEG capping; the combined action of the UCNP surface and PEG facilitated the loading for an effective energy transfer and, additionally, avoided photosensitizer leaching from the nanohybrid (UCNP-IBDP@PEG).

View Article and Find Full Text PDF

The spectroscopic properties in water solution of the different prototropic forms of the strongly fluorescent hemiacetal 4,9-dihydroxy-1,2-dihydro-4,11a-methanooxocino[4,5-b]benzofuran-5(4H)-one (1a, monardine), the aza analogue 4,9-dihydroxy-3,4-dihydro-1H-4,11a-methanobenzofuro[2,3-d]azocin-5(2H)-one (2a, azamonardine) and the respective 2-carboxyl derivatives (1b, 2b) have been studied by experimental and quantum-chemical methods. Monardine and carboxymonardine are the major products of new fluorogenic, room-temperature reactions of hydroxytyrosol or salvianic acid in aqueous solution, respectively, and present unique photophysical properties. Near neutral pH (pKa = 7.

View Article and Find Full Text PDF

The synthesis, photophysical and laser properties of a difluoro-boron-triaza-anthracene (BTAA) compound are analyzed in the present paper. The molecular structure of this dye is an anthracene-like core with N atoms at 4a, 9 and 10a positions where two of them (4a and 10a) are linked through a BF(2)-bridge group. This structure is reminiscent of aza-BODIPY dye with an s-indacene core, BODIPY being one of the most commonly used laser dye family in the Vis region.

View Article and Find Full Text PDF

The understanding of the interaction of CdSe/ZnS semiconductor quantum dots (QD) with their chemical environment is fundamental, yet far from being fully understood. p-Methylphenyldiazonium tetrafluoroborate has been used to get some insight into the effect of diazonium salts on the spectroscopy of QD. Our study reveals that the surface of CdSe/ZnS quantum dots can be modified by diazonium salts (although not functionalized), showing and on-off fluorescence behaviour that memorizes past quenching recoveries.

View Article and Find Full Text PDF

The intense blue fluorescence of the infusion of Lignum nephriticum (Eysenhardtia polystachya), first observed in the sixteenth century, is due to a novel four-ring tetrahydromethanobenzofuro[2,3-d]oxacine which is not present in the plant but is the end product of an unusual, very efficient iterative spontaneous oxidation of at least one of the tree's flavonoids.

View Article and Find Full Text PDF