Publications by authors named "Liras A"

Congenital coagulopathies have, throughout the history of medicine, been a focus of scientific study and of great interest as they constitute an alteration of one of the most important and conserved pathways of evolution. The first therapeutic strategies developed to address them were aimed at restoring the blood components lost during hemorrhage by administering whole blood or plasma. Later on, the use of cryoprecipitates was a significant breakthrough as it made it possible to decrease the volumes of blood infused.

View Article and Find Full Text PDF

Proteostasis, i.e., the homeostasis of proteins, responsible for ensuring protein turnover, is regulated by proteases, which also participate in the etiopathogenesis of multiple conditions.

View Article and Find Full Text PDF

Hemophilia A (HA) cell therapy approaches in pediatric individuals require suitable factor (F)VIII-producing cells for stable engraftment. Liver sinusoidal endothelial cells (LSEC) and hematopoietic stem cells (HSC) have been demonstrated to be suitable for the treatment of adult HA mice. However, after transplantation in busulfan (BU)-conditioned newborn mice, adult LSEC/HSC cannot efficiently engraft, while murine fetal liver (FL) hemato/vascular cells from embryonic day 11-13 of gestation (E11-E13), strongly engraft the hematopoietic and endothelial compartments while also secreting FVIII.

View Article and Find Full Text PDF

The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation.

View Article and Find Full Text PDF

Factor V deficiency, an ultra-rare congenital coagulopathy, is characterized by bleeding episodes that may be more or less intense as a function of the levels of coagulation factor activity present in plasma. Fresh-frozen plasma, often used to treat patients with factor V deficiency, is a scarcely effective palliative therapy with no specificity to the disease. CRISPR/Cas9-mediated gene editing, following precise deletion by non-homologous end-joining, has proven to be highly effective for modeling on a HepG2 cell line a mutation similar to the one detected in the factor V-deficient patient analyzed in this study, thus simulating the pathological phenotype.

View Article and Find Full Text PDF

Factor V together with activated factor X forms the prothrombinase complex, which transforms prothrombin into thrombin. The species is characterized by very high levels of this factor and short clotting times, which hinders accurate measurements. For that reason, a detailed characterization of such parameters is indispensable.

View Article and Find Full Text PDF

Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.

View Article and Find Full Text PDF

Deficiency of factor V is a congenital autosomal recessive coagulopathy associated with mutations in the F5 gene that results in mild-to-severe bleeding episodes. Factor V is a component of the prothrombinase complex responsible for accelerating conversion of prothrombin to thrombin. At the present time there are no therapeutic factor V concentrates available.

View Article and Find Full Text PDF

Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor.

View Article and Find Full Text PDF

Haemophilia is a hereditary X-linked recessive disorder caused by a deficiency of either clotting factor VIII (haemophilia A) or IX (haemophilia B). Conventional treatment is currently based on the use of either plasma derived or recombinant coagulation factors. This paper reports on the case of a patient with severe haemophilia who presented with mesial decay and interproximal tartar build-up, for which extraction and scaling to remove tartar deposits were indicated.

View Article and Find Full Text PDF

The development of new strategies based on cell therapy approaches to correct haemophilia A (HA) requires further insights into new cell populations capable of producing coagulation factor VIII (FVIII) and presenting stable engraftment potential. The major producers of FVIII in the adult are liver sinusoidal endothelial cells (LSECs) and in a lesser degree bone marrow-derived cells, both of which have been shown to ameliorate the bleeding phenotype in adult HA mice after transplantation. We have previously shown that cells from the foetal liver (FL) and the aorta-gonads-mesonephros (AGM) haematopoietic locations possess higher LSEC engraftment potential in newborn mice compared with adult-derived LSECs, constituting likely therapeutic targets for the treatment of HA in neonates.

View Article and Find Full Text PDF

Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative.

View Article and Find Full Text PDF

Introduction: In hemophilia, advanced therapies are warranted from a conceptual and methodological standpoint. Current advanced therapy strategies are centered on the use of adeno-associated viral vectors, although problems related to immunogenicity and hepatotoxicity still remain.

Areas Covered: Future clinical trials will have to scrupulously observe international bioethical standards in terms of patient selection, particularly children.

View Article and Find Full Text PDF

Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering).

View Article and Find Full Text PDF

Current treatment of joint cartilage lesions is based either on conventional techniques (bone marrow stimulation, osteochondral autograft or allograft transplantation) or on newly developed techniques (chondrocyte implantation and those based on cell therapy that use bioreactors, growth factors, mesenchymal stem cells [MSCs] and genetically modified cells). The aim of this article is to review the therapeutic strategies above mentioned and to determine whether the chondral damage seen in haemophilia could benefit from any of them. The different conventional techniques have shown similar results whereas autologous chondrocyte implantation, which is in common use at the present time, has not been shown to produce any conclusive results or to lead to the formation of hyaline cartilage.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. These iPSCs from somatic cells have been reprogrammed with the introduction of transcription factors and are capable to differentiate into cells from all three germ layers. These strategies require retrovirus transduction or transfection of plasmid vectors strategy without viral transduction.

View Article and Find Full Text PDF

There is much to be investigated about the specific characteristics of stem cells and about the efficacy and safety of the new drugs based on this type of cells, both embryonic as adult stem cells, for several therapeutic indications (cardiovascular and ischemic diseases, diabetes, hematopoietic diseases, liver diseases). Along with recent progress in transference of nuclei from human somatic cells, as well as iPSC technology, has allowed availability of lineages of all three germ layers genetically identical to those of the donor patient, which permits safe transplantation of organ-tissue-specific adult stem cells with no immune rejection. The main objective is the need for expansion of stem cell characteristics to maximize stem cell efficacy (i.

View Article and Find Full Text PDF

The University is tasked with drawing together, transmitting and maintaining knowledge, while creating an area where the ethical "sense" required for working in the field of Biology and Biomedicine can be provided. Although scientific knowledge is present on an overwhelming scale in nature and, therefore, its discovery is unceasing, this does not mean that, as a human being, the researcher has no limitations. It is Bioethics that sets this limit.

View Article and Find Full Text PDF

High-purity plasma-derived and recombinant factors are currently safe and efficient treatment for haemophilia. The mid-term future of haemophilia treatment will involve the use of modified recombinant factors to achieve advantages such as decreased immunogenicity in inhibitor formation and enhanced efficacy as a result of their longer half-life. In the long-term, gene therapy and cell therapy strategies will have to be considered.

View Article and Find Full Text PDF

The period between isolation of HIV in the early 1980s and the development of effective viral inactivation procedures able to eradicate the virus from the blood supply was long and unfortunately many recipients of blood-derived products became infected; this translated into a devastating impact on their quality of life, quality of care as well as on their life expectancy. Some years later, hepatitis C virus infection was identified as another known blood-borne disease complicating the treatment of haemophilia. Nowadays, the potential threat of emerging new pathogens has stressed the need to provide effective but primarily safe products with regard to infectious agents, as well as to regularly update therapeutic guidelines for haemophilia.

View Article and Find Full Text PDF

It has been long since French physician Jean-Baptiste Denys carried out the first successful blood transfusion to a human being. Using bird feathers as canules, sheep blood was transfused to a young man. The patient died soon after Denys' treatment and Denys was accused of murder.

View Article and Find Full Text PDF

One of the most spectacular advances in the history of scientific knowledge was the discovery of deoxyribonucleic acid (DNA) by Watson and Crick in 1953. This enabled certain proteins to be prepared in this way for their therapeutic use in clinical practice. Today, in the first decade of the 21st century, hundreds of therapeutic proteins have been produced recombinantly and about 50 of them have been approved for clinical use.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9eobaen9rtgl7v2v27qvl89qh23plk8k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once