A major challenge in analysing single-nucleotide polymorphism (SNP) genotype datasets is detecting and filtering errors that bias analyses and misinterpret ecological and evolutionary processes. Here, we present a comprehensive method to estimate and minimise genotyping error rates (deviations from the 'true' genotype) in any SNP datasets using triplicates (three repeats of the same sample) in a four-step filtration pipeline. The approach involves: (1) SNP filtering by missing data; (2) SNP filtering by error rates; (3) sample filtering by missing data and (4) detection of recaptured individuals by using estimated SNP error rates.
View Article and Find Full Text PDF