Publications by authors named "Liran Goren"

Earthquake-induced soil-liquefaction is a devastating phenomenon associated with loss of soil rigidity due to seismic shaking, resulting in catastrophic liquid-like soil deformation. Traditionally, liquefaction is viewed as an effectively undrained process. However, since undrained liquefaction only initiates under high energy density, most earthquake liquefaction events remain unexplained, since they initiate far from the earthquake epicenter, under low energy density.

View Article and Find Full Text PDF

The presence of longitudinal ridges documented in long runout landslides across our solar system is commonly associated with the existence of a basal layer of ice. However, their development, the link between their occurrence and the emplacement mechanisms of long runout landslides, and the necessity of a basal ice layer remain poorly understood. Here, we analyse the morphometry of longitudinal ridges of a martian landslide and show that the wavelength of the ridges is 2-3 times the average thickness of the landslide deposit, a unique scaling relationship previously reported in ice-free rapid granular flow experiments.

View Article and Find Full Text PDF

Landscapes on Earth retain a record of the tectonic, environmental and climatic history under which they formed. Landscapes tend towards an equilibrium in which rivers attain a stable grade that balances the tectonic production of elevation and with hillslopes that attain a gradient steep enough to transport material to river channels. Equilibrium low-relief surfaces are typically found at low elevations, graded to sea level.

View Article and Find Full Text PDF

River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance.

View Article and Find Full Text PDF