The structural coloration of textiles with bionic photonic crystals (PCs) is expected to become a critical approach to the ecological coloration of textiles. Rapid and large-area preparation of PC structurally colored textiles can be achieved via self-assembly of high mass fractions of liquid photonic crystals (LPCs). However, the rapid and large-scale manufacturing of LPCs remains a challenge.
View Article and Find Full Text PDFPatterned photonic crystals (PCs) have great application potential in the textile field owing to their attractive high-saturation iridescent effect. Herein, based on the idea of resist printing, a novel approach to constructing patterned photonic crystals via screen printing was designed and achieved. A colorless pattern with hydrophilic and hydrophobic difference was firstly prepared by screen printing using a hydrophilic polymer paste printed on a hydrophobic fabric, and then the PC structurally colored pattern was obtained through scrapping liquid photonic crystals (LPCs) on the fabric because the LPCs were spread and assembled in the hydrophilic pattern but resisted in the hydrophobic areas, so that to realize the rapid preparation of patterned PCs on the fabric surface.
View Article and Find Full Text PDFOver the past years, photonic crystals (PCs) with a periodically ordered nanostructure have attracted great attention due to their potential as advanced optical materials for structural coloration of textiles. However, the weak structural stability of PCs on flexible textile substrates makes them vulnerable to strong external forces, hampering their large-scale application. In this work, a waterborne polyurethane (wPU) is chosen for enhancing the structural stability of PCs.
View Article and Find Full Text PDFPatterned structural color photonic crystals (PCs) based on periodic photonic nanostructures have attracted great interest in developing high-performance sensors and other smart optical materials as well as tunable structurally colored fashion textiles. However, previously reported patterned PCs with both high color saturation and tough mechanical strength were difficult to achieve, which restricts their practical applications. Herein, arbitrarily patterned silica/polyurethane acrylate (SiO/PUA) inverse opal photonic crystals (IOPCs) with high color saturation and tough mechanical strength were innovatively designed and fabricated by writing with photopolymerizable PUA "ink" on a self-assembled hollow SiO PC template.
View Article and Find Full Text PDFAmorphous photonic structures with non-iridescent and highly-stable structural color were fabricated via a simple one-step spray-coating technique. With this strategy, the obtained films on textile substrates presented short-ordered and amorphous photonic structures (APSs) similar to the amorphous nanostructures of avian feathers. The structural color presented the same hue when viewed at different angles and could be well controlled by varying the diameters of the SiO₂ nanospheres.
View Article and Find Full Text PDF