Publications by authors named "Lipika Mirdha"

The unidirectional movement of nascent secretory proteins in the cell is primarily assisted by the signal recognition particles (SRP). However, this does not completely justify the importance of the signal peptide (SP) which gets eliminated after the protein translocation. We have earlier demonstrated that a negatively charged lipid such as POPG plays an important role in the higher binding affinity and cholesterol-discriminating ability of the apolipoprotein E (ApoE) SP.

View Article and Find Full Text PDF

Protein aggregation plays a crucial role in the development of several neurodegenerative diseases. It is important to understand the aggregation process for the detection of the onset of these diseases. Alzheimer's Disease (AD) is one of the most prevalent neurodegenerative diseases caused by the aggregation of Aβ-40 and Aβ-42 peptides.

View Article and Find Full Text PDF

The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide.

View Article and Find Full Text PDF

Soluble secretory and membrane proteins contain a short stretch of signal peptide (SP) at their N-terminal end, which gets cleaved after reaching the destination organelle. However, the importance of SP in protein trafficking is not fully understood. The lipid compositions of cellular organelles are highly heterogeneous, and the preference of SP toward a particular lipid composition might play a key role in unidirectional trafficking of protein.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, Spinocerebellar ataxia, and Type-II diabetes.

View Article and Find Full Text PDF

The intrinsically disordered proteins (IDPs) belong to an important class of proteins due to their higher structural flexibility and diverse functions. IDPs lack stable three-dimensional structure and exist as structural ensemble in solution. Furthermore, IDPs have been found to be associated with various neurodegenerative diseases like Alzheimer's, Parkinson's, diabetes and spinocerebellar ataxia.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1k3igsn6j64h5asm7p3dh1ui00dk44e6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once