Publications by authors named "Lipeng Ren"

The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • The oxidative phosphorylation system in mitochondria is crucial for converting energy from food and can adapt its metabolism based on the body's needs or diseases.
  • Oral treatment with an inhibitor of mitochondrial transcription (IMT) shifts metabolism in male mice towards burning fatty acids, leading to reduced body weight and improved liver and glucose health on a high-fat diet.
  • The treatment causes a decrease in oxidative phosphorylation but increases fatty acid oxidation in the liver, suggesting a potential drug strategy for obesity and related health issues.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying a new treatment called adjudin to help recover insulin-producing beta cells which might help treat diabetes.
  • In experiments with zebrafish and mice, adjudin increased insulin levels, improved how beta cells respond to glucose, and decreased overall glucose levels.
  • The treatment also made beta cells work better and improved their identity and ability to produce insulin in lab-grown islets from both newborn and diabetic mice.
View Article and Find Full Text PDF

It is known that β cell proliferation expands the β cell mass during development and under certain hyperglycemic conditions in the adult, a process that may be used for β cell regeneration in diabetes. Here, through a new high-throughput screen using a luminescence ubiquitination-based cell cycle indicator (LUCCI) in zebrafish, we identify HG-9-91-01 as a driver of proliferation and confirm this effect in mouse and human β cells. HG-9-91-01 is an inhibitor of salt-inducible kinases (SIKs), and overexpression of Sik1 specifically in β cells blocks the effect of HG-9-91-01 on β cell proliferation.

View Article and Find Full Text PDF

A strategy to combat the adverse effects of urbanization involves the installation of green roofs under different climatic conditions. The design and maintenance of green roof systems need to be tailored to the local climate. However, there is a scarcity of reports on the performance of plants under temperate monsoonal climatic conditions.

View Article and Find Full Text PDF

Background/aims: Busulfan is commonly used for cancer chemotherapy. Although it has the advantage of increasing the survival rate of patients, it can cause male infertility via damaging the testes and reducing sperm counts. Therefore, the underlying mechanism should be explored, and new agents should be developed to protect the male reproductive system from busulfan-induced damage.

View Article and Find Full Text PDF

Porcine pancreatic stem cells (PSCs) are considered promising transplant materials that may be used to treat diabetes, but some problems, such as insufficient cell number and low differentiation efficiency, should be solved before its clinical application. Resveratrol is a natural polyphenolic compound that can alleviate the complications of diabetes. In this study, we aimed to explore the specific effect of resveratrol on porcine PSCs.

View Article and Find Full Text PDF

Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components.

View Article and Find Full Text PDF

Porcine pancreatic stem cells (PSCs) are one kind of the potential cells for treatment of human diabetes. Autophagy is a highly conserved cellular degradation process in which it helps to maintain the balance between the synthesis, degradation and subsequent recycling of cellular components. However, how autophagy contributes to PSCs has not yet been investigated.

View Article and Find Full Text PDF

Objectives: miR-375 is one of the highly expressed microRNAs (miRNAs) found in pancreatic islets of both humans and mice. In this study, we investigated functions of miRNA miR-375 in porcine pancreatic stem cells (PSC).

Materials And Methods: We transfected mimic and inhibitor of miR-375 in PSCs to measure functional roles of the microRNA and its effects on cell cycle proliferation and cell differentiation were determined.

View Article and Find Full Text PDF

Objectives: Porcine pancreatic stem cells (PSCs) are highly valuable in transplantation applications for type II diabetes. However, there are still many problems to be solved before they can be used in the clinic, such as insufficient cell number availability and low secretion level of insulin. It has been reported that Wnt3a plays pivotal roles during cell proliferation and differentiation.

View Article and Find Full Text PDF