Prior studies show that disrupting somatotropic axis components extends laboratory mouse lifespan, but confounding effects of additional genes and hormones obscure the specific impact of growth hormone (GH) on longevity. We address this issue by using mice with a specific knockout of the GH gene, revealing that disrupting GH alone substantially increases lifespan. The longevity effects are accompanied by altered metabolic fuel utilization, directly linking GH action to aging mechanisms.
View Article and Find Full Text PDFGrowth hormone-releasing hormone-deficient (GHRH-KO) mice have previously been characterized by lower body weight, disproportionately high body fat accumulation, preferential metabolism of lipids compared to carbohydrates, improved insulin sensitivity, and an extended lifespan. That these mice are long-lived and insulin-sensitive conflicts with the notion that adipose tissue accumulation drives the health detriments associated with obesity (i.e.
View Article and Find Full Text PDFDysregulation of growth hormone (GH) signaling consistently leads to increased lifespan in laboratory rodents, yet the precise mechanisms driving this extension remain unclear. Understanding the molecular underpinnings of the beneficial effects associated with GH deficiency could unveil novel therapeutic targets for promoting healthy aging and longevity. In our pursuit of identifying metabolites implicated in aging, we conducted an unbiased lipidomic analysis of serum samples from growth hormone-releasing hormone knockout (GHRH-KO) female mice and their littermate controls.
View Article and Find Full Text PDFThe Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age.
View Article and Find Full Text PDFOur previous research has demonstrated that mice lacking functional growth hormone-releasing hormone (GHRH) exhibit distinct physiological characteristics, including an extended lifespan, a preference for lipid utilization during rest, mild hypoglycemia, and heightened insulin sensitivity. They also show a further increase in lifespan when subjected to caloric restriction. These findings suggest a unique response to fasting, which motivated our current study on the response to glucagon, a key hormone released from the pancreas during fasting that regulates glucose levels, energy expenditure, and metabolism.
View Article and Find Full Text PDFL-serine is a non-essential amino acid that plays a vital role in protein synthesis, cell proliferation, development, and sphingolipid formation in the central nervous system. It exerts its effects through the activation of glycine receptors and upregulation of PPAR-γ, resulting in neurotransmitter synthesis, neuroprotection, and anti-inflammatory effects. L-serine shows potential as a protective agent in various neurological diseases and neurodegenerative disorders.
View Article and Find Full Text PDFAlzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD.
View Article and Find Full Text PDFNeurodegenerative diseases feature changes in cognition, and anxiety-like and autism-like behaviors, which are associated with epigenetic alterations such as DNA methylation and histone modifications. The amino acid L-serine has been shown to have beneficial effects on neurological symptoms. Here, we found that growth hormone-releasing hormone knockout (GHRH-KO) mice, a GH-deficiency mouse model characterized by extended lifespan and enhanced insulin sensitivity, showed a lower anxiety symptom and impairment of short-term object recognition memory and autism-like behaviors.
View Article and Find Full Text PDFAlzheimer's disease (AD) is one of the most devastating diseases currently in the world with no effective treatments. There is increasing evidence that the gut microbiome plays a role in AD. Here we set out to study the age-related changes in the microbiome of the Tgf344-AD rats.
View Article and Find Full Text PDFWhile glucagon has long been recognized as the primary counter hormone to insulin's actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling.
View Article and Find Full Text PDFIt is well documented that the environment of the developing fetus, including availability of nutrients and presence of toxins, can have major impact on adult phenotype, age-related traits and risk of chronic disease. There is also accumulating evidence that postnatal environment can impact adult characteristics related to evolutionary fitness, health, and aging. To determine whether early life hormonal interventions can alter trajectory of aging, we have examined the effects of early life growth hormone (GH) replacement therapy in Prop1 (Ames dwarf) mice which are GH deficient and remarkably long lived.
View Article and Find Full Text PDFBackground: Poultry eggs are a low-cost, high-protein nutrient package that can be consumed as part of quality diets. However, consumption of poultry egg products is historically contentious, which highlights the importance of investigating impacts of long-term egg consumption on metabolic health.
Objective: Our study utilized the zebrafish, , a newly defined model of human metabolic health, to understand the metabolic consequence of consuming egg products in lieu of other well-described protein sources.
The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging.
View Article and Find Full Text PDFMice with disruptions of growth hormone-releasing hormone (GHRH) or growth hormone receptor (GHR) exhibit similar phenotypes of prolonged lifespan and delayed age-related diseases. However, these two models respond differently to calorie restriction indicating that they might carry different and/or independent mechanisms for improved longevity and healthspan. In order to elucidate these mechanisms, we generated GHRH and GHR double-knockout mice (D-KO).
View Article and Find Full Text PDFHistone modifications, specifically in the lysine residues of histone H3, have been implicated in lifespan regulation in several model organisms. Our previous studies showed that growth hormone (GH) treatment during early life can dramatically influence lifespan in long-lived Ames dwarf mice. However, the effects of this hormonal intervention on epigenetic modifications have never been examined.
View Article and Find Full Text PDFGrowth hormone (GH) signaling plays a key role in mediating growth, development, metabolism, and lifespan regulation. However, the mechanisms of longevity regulation at the cellular and molecular level are still not well-understood. An important area in the field of GH research is in the development of advanced transgenic systems for conditional expression of GH signaling in a cell type- or tissue-specific manner.
View Article and Find Full Text PDFGenes (Basel)
September 2020
Aging is a complex process mainly categorized by a decline in tissue, cells and organ function and an increased risk of mortality. Recent studies have provided evidence that suggests a strong association between epigenetic mechanisms throughout an organism's lifespan and age-related disease progression. Epigenetics is considered an evolving field and regulates the genetic code at several levels.
View Article and Find Full Text PDFOur previous studies showed that loss-of-function mutation of growth hormone releasing hormone (GHRH) results in increased longevity and enhanced insulin sensitivity in mice. However, the details of improved insulin action and tissue-specific insulin signaling are largely unknown in this healthy-aging mouse model. We conducted hyperinsulinemic-euglycemic clamp to investigate mechanisms underlying enhanced insulin sensitivity in growth hormone (GH) deficient mice.
View Article and Find Full Text PDFOur previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell-based gene-targeting method. In this study, we targeted the GHRH gene using the CRISPR/Cas9 technology to avoid passenger alleles/mutations and performed in-depth physiological and metabolic characterization. In agreement with our previous observations, male and female GHRH mice have significantly reduced body weight and enhanced insulin sensitivity when compared to wild type littermates.
View Article and Find Full Text PDFNumerous genetic manipulations that extend lifespan in mice have been discovered over the past two decades, the most robust of which has arguably been the down regulation of growth hormone (GH) signaling. However, while decreased GH signaling has been associated with improved health and lifespan, many of the underlying physiological changes and molecular mechanisms associated with GH signaling have yet to be elucidated. To this end, we have completed the first transcriptomic and metabolomic study on long-lived growth hormone releasing hormone knockout (GHRH-KO) and wild-type mice in brown adipose tissue (transcriptomics) and blood serum (metabolomics).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
It is well documented that inhibition of mTORC1 (defined by Raptor), a complex of mechanistic target of rapamycin (mTOR), extends life span, but less is known about the mechanisms by which mTORC2 (defined by Rictor) impacts longevity. Here, rapamycin (an inhibitor of mTOR) was used in GHR-KO (growth hormone receptor knockout) mice, which have suppressed mTORC1 and up-regulated mTORC2 signaling, to determine the effect of concurrently decreased mTORC1 and mTORC2 signaling on life span. We found that rapamycin extended life span in control normal (N) mice, whereas it had the opposite effect in GHR-KO mice.
View Article and Find Full Text PDFLife-long lack of growth hormone (GH) action can produce remarkable extension of longevity in mice. Here we report that GH treatment limited to a few weeks during development influences the lifespan of long-lived Ames dwarf and normal littermate control mice in a genotype and sex-specific manner. Studies in a separate cohort of Ames dwarf mice show that this short period of the GH exposure during early development produces persistent phenotypic, metabolic and molecular changes that are evident in late adult life.
View Article and Find Full Text PDFThere is increasing evidence that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signaling (collectively referred to as somatotropic signaling) during development has a profound influence on aging and longevity. Moreover, the absence of GH action was shown to modify responses of adult mice to calorie restriction (CR) and other antiaging interventions. It was therefore of interest to determine whether GH resistance in GH receptor knockout (GHR-KO) mice would modify the effects of mild pre-weaning CR imposed by increasing the number of pups in a litter (the so-called litter crowding).
View Article and Find Full Text PDFAmes dwarf mice (Prop1) are long-lived due to a loss of function mutation, resulting in deficiency of GH, TSH, and prolactin. Along with a marked extension of longevity, Ames dwarf mice have improved energy metabolism as measured by an increase in their oxygen consumption and heat production, as well as a decrease in their respiratory quotient. Along with alterations in energy metabolism, Ames dwarf mice have a lower core body temperature.
View Article and Find Full Text PDF