Josephson junctions are typically characterized by a single phase difference across two superconductors. This conventional two-terminal Josephson junction can be generalized to a multiterminal device where the Josephson energy contains terms with contributions from multiple independent phase variables. Such multiterminal Josephson junctions (MTJJs) are being considered as platforms for engineering effective Hamiltonians with nontrivial topologies, such as Weyl crossings and higher-order Chern numbers.
View Article and Find Full Text PDFSemiconductor nanowire (NW) quantum devices offer a promising path for the pursuit and investigation of topologically-protected quantum states, and superconducting and spin-based qubits that can be controlled using electric fields. Theoretical investigations into the impact of disorder on the attainment of dependable topological states in semiconducting nanowires with large spin-orbit coupling and-factor highlight the critical need for improvements in both growth processes and nanofabrication techniques. In this work, we used a hybrid lithography tool for both the high-resolution thermal scanning probe lithography and high-throughput direct laser writing of quantum devices based on thin InSb nanowires with contact spacing of 200 nm.
View Article and Find Full Text PDFStudies of nanoscale superconducting structures have revealed various physical phenomena and led to the development of a wide range of applications. Most of these studies concentrated on one- and two-dimensional structures due to the lack of approaches for creation of fully engineered three-dimensional (3D) nanostructures. Here, we present a 'bottom-up' method to create 3D superconducting nanostructures with prescribed multiscale organization using DNA-based self-assembly methods.
View Article and Find Full Text PDFRatiometric imaging is an invaluable tool for quantitative microscopy, allowing for robust detection of FRET, anisotropy, and spectral shifts of nano-scale optical probes in response to local physical and chemical variations such as local pH, ion composition, and electric potential. In this paper, we propose and demonstrate a scheme for widefield ratiometric imaging that allows for continuous tuning of the cutoff wavelength between its two spectral channels. This scheme is based on angle-tuning the image splitting dichroic beamsplitter, similar to previous works on tunable interference filters.
View Article and Find Full Text PDFIn this work, we describe a low-cost, two-step synthesis of composites of nitrogen-doped carbon quantum dots (NCDs) with γ-FeO (NCDs/γ-FeO), which is based on a hydrothermal cum co-precipitation method. The product is a fine powder of particles having an average diameter of 9 ± 3 nm. The physical and chemical properties of NCDs/γ-FeO were studied, as well as the superconducting quantum interference device and Mossbauer analysis of the magnetic properties of these nanocomposites.
View Article and Find Full Text PDFThe quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. Here, we report a general method of assembling nanoparticles in a linear "pillar" morphology with regulated internal configurations.
View Article and Find Full Text PDFThe study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm.
View Article and Find Full Text PDF