Publications by authors named "Lionikas A"

Article Synopsis
  • Age-related macular degeneration (AMD) is a leading cause of central vision loss, with age, genetics, and smoking as key risk factors.
  • Machine learning was used to predict biological age across different organ systems and assess their association with AMD, revealing that most organ systems in AMD patients showed accelerated ageing, particularly the immune system in younger males.
  • Interestingly, AMD patients had slower ageing in their liver compared to controls, especially in females, and genetic risk scores for AMD correlated with faster ageing in most organs, highlighting the complex relationship between AMD and biological ageing.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic variability plays a crucial role in differences in skeletal muscle mass, but the specific genes responsible are not well understood; this study focuses on Rps6ka6 and Pou3f4 genes located on chromosome X in mice.
  • The study involved analyzing muscle samples from male CFW mice with different alleles linked to muscle mass, revealing that the "increasing" allele led to larger muscle size and more muscle fibers, particularly in the fast-twitch extensor digitorum longus muscle.
  • Findings suggest that Rps6ka6 influences muscle fiber count in fast-twitch muscles, whereas the Pou3f4 gene impacts fiber numbers in slow-twitch muscles, indicating distinct genetic roles in muscle development.
View Article and Find Full Text PDF

Aims: Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload.

View Article and Find Full Text PDF

Combining samples for genetic association is standard practice in human genetic analysis of complex traits, but is rarely undertaken in rodent genetics. Here, using 23 phenotypes and genotypes from two independent laboratories, we obtained a sample size of 3076 commercially available outbred mice and identified 70 loci, more than double the number of loci identified in the component studies. Fine-mapping in the combined sample reduced the number of likely causal variants, with a median reduction in set size of 51%, and indicated novel gene associations, including Pnpo, Ttll6, and GM11545 with bone mineral density, and Psmb9 with weight.

View Article and Find Full Text PDF

Muscle bulk in adult healthy humans is highly variable even after height, age, and sex are accounted for. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences muscle mass differences, but causative genes remain largely unknown.

View Article and Find Full Text PDF

Myostatin is an inhibitor of skeletal muscle growth and might be involved in adaptations to caloric restriction (CR). We compared responses to 12-week 30% CR in male mice of Berlin high strain with myostatin dysfunction (BEH) and wild-type myostatin (BEH+/+). BEH mice were heavier than BEH+/+ mice (58.

View Article and Find Full Text PDF

Objectives: The aim of the study was to investigate if myostatin dysfunction can ameliorate fasting-induced muscle wasting.

Methods: 18-week old males from Berlin high (BEH) strain with myostatin dysfunction and wild type myostatin (BEH+/+) strain were subjected to 48-h food deprivation (FD). Changes in body composition as well as contractile properties of soleus (SOL) and extensor digitorum longus (EDL) muscles were studied.

View Article and Find Full Text PDF

Citrate synthase (CS) is a key mitochondrial enzyme. The aim of this study was to test the hypothesis that low CS activity impairs the metabolic health of mice fed a high fat diet (HFD) and promotes palmitate-induced lipotoxicity in muscle cells. C57BL/6J (B6) mice and congenic B6.

View Article and Find Full Text PDF

The LG/J x SM/J advanced intercross line of mice (LG x SM AIL) is a multigenerational outbred population. High minor allele frequencies, a simple genetic background, and the fully sequenced LG and SM genomes make it a powerful population for genome-wide association studies. Here we use 1,063 AIL mice to identify 126 significant associations for 50 traits relevant to human health and disease.

View Article and Find Full Text PDF

The genetics underlying variation in health-related musculoskeletal phenotypes can be investigated in a mouse model. Quantitative trait loci (QTLs) affecting musculoskeletal traits in the LG/J and SM/J strain lineage remain to be refined and corroborated. The aim of this study was to map muscle and bone traits in males (n = 506) of the 50th filial generation of advanced intercross lines (LG/SM AIL) derived from the two strains.

View Article and Find Full Text PDF

The H55N polymorphism in the Cs gene of A/J mice has been linked to low activity of the enzyme in skeletal muscles. The aim of the study was to test this hypothesis and examine effects of low citrate synthase (CS) activity on palmitate metabolism in muscle cells. Results of the study showed that carriers of the wild type (WT) Cs (C57BL/6J and Balb/cByJ mouse strains) had higher CS activity (p < 0.

View Article and Find Full Text PDF

Phenotypic diversity between laboratory mouse strains provides a model for studying the underlying genetic mechanisms. The A/J strain performs poorly in various endurance exercise models. The aim of the study was to test if endurance capacity and contractility of the fast- and slow-twitch muscles are affected by the genes on mouse chromosome 10.

View Article and Find Full Text PDF

Muscle fiber cross-sectional area (CSA) and proportion of different fiber types are important determinants of muscle function and overall metabolism. Genetic variation plays a substantial role in phenotypic variation of these traits; however, the underlying genes remain poorly understood. This study aimed to map quantitative trait loci (QTL) affecting differences in soleus muscle fiber traits between the LG/J and SM/J mouse strains.

View Article and Find Full Text PDF

Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response.

View Article and Find Full Text PDF

Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice.

View Article and Find Full Text PDF
Article Synopsis
  • Mice, commonly used in genetic studies, have limitations in mapping due to strong genetic linkage in inbred strains, while Carworth Farms White (CFW) mice show faster breakdown of this linkage, making them a better option for research.* -
  • A genome-wide association study (GWAS) was conducted on 1,200 male CFW mice, using genotyping by sequencing for over 92,000 SNPs and RNA sequencing for gene expression analysis in three brain areas.* -
  • The research uncovered many behavioral and physiological traits linked to specific genes, including Azi2 related to methamphetamine sensitivity and Zmynd11 linked to anxiety-like behavior, highlighting the effectiveness of the CFW mouse model and the techniques used.*
View Article and Find Full Text PDF

Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival.

View Article and Find Full Text PDF

The aim of the study was to investigate if myostatin dysfunction would promote the gain in muscle mass and peak isometric force (P0 ) of soleus muscle (SOL) in response to functional overloading (FO) after ablation of the gastrocnemius muscle. Fifteen male Berlin high (BEH) mice homozygous for the compact mutation causing dysfunction of myostatin and 17 mice with the corresponding wild-type allele (BEH+/+) were subjected to FO of SOL for 28 days at the age of 14 weeks. Compared with BEH+/+ mice, SOL of BEH was heavier (mean ± SD, 13.

View Article and Find Full Text PDF

Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.

View Article and Find Full Text PDF

Regenerated skeletal muscles show less muscle damage after strenuous muscle exercise. The aim of the studies was to investigate if the regeneration is associated with reduced muscle creatine kinase (CK) efflux immediately after the exercise. Cryolesion was applied to the soleus muscle of 3-month-old C57BL/6J male mice.

View Article and Find Full Text PDF

Mutations in the skeletal muscle channel (SCN4A), encoding the Nav1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo.

View Article and Find Full Text PDF

The genes underlying variation in skeletal muscle mass are poorly understood. Although many quantitative trait loci (QTLs) have been mapped in crosses of mouse strains, the limited resolution inherent in these conventional studies has made it difficult to reliably pinpoint the causal genetic variants. The accumulated recombination events in an advanced intercross line (AIL), in which mice from two inbred strains are mated at random for several generations, can improve mapping resolution.

View Article and Find Full Text PDF

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ threefold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring morphological characteristics of the soleus muscle (fiber number and cross sectional area; CSA), by analyzing the transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were four to eight times larger than those of BEL.

View Article and Find Full Text PDF