Publications by authors named "Lionel Montagne"

The pursuit of structure-property relationships in crystalline metal halide perovskites (MHPs) has yielded an unprecedented combination of advantageous characteristics for wide-ranging optoelectronic applications. While crystalline MHP structures are readily accessible through diffraction-based structure refinements, providing a clear view of associated long-range ordering, the local structures in more recently discovered glassy MHP states remain unexplored. Herein, we utilize a combination of Raman spectroscopy, solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy, in situ X-ray diffraction (XRD) and pair distribution function (PDF) analysis to investigate the coordination environment in crystalline, glass and melt states of the 2D MHP [(S)-(-)-1-(1-naphthyl)ethylammonium]PbBr.

View Article and Find Full Text PDF

Two families of glasses in the LiO-AlO-BO-TiO-PO system were prepared via two different synthesis routes: melt-quenching and ball-milling. Subsequently, they were submitted to crystallization and yielded the LiA.Ti(PO) (LATP)-based glass-ceramics.

View Article and Find Full Text PDF

We investigated using solid-state NMR spectroscopy the short-range structural features in lithium aluminosilicate glasses with the addition of P2O5 and considering various Al2O3/Li2O ratios. The phosphorus environment is determined quantitatively using 31P Magic Angle Spinning NMR constrained by results obtained from 31P-27Al Multiple-Quantum Coherence-based NMR techniques. Phosphorus is mainly located as orthophosphate and pyrophosphate species in glasses with a low amount of Al2O3.

View Article and Find Full Text PDF

We introduce a novel heteronuclear dipolar recoupling based on the R2 symmetry, which uses the tanh/tan (tt) shaped pulse as a basic inversion element and is denoted R2(tt). Using first-order average Hamiltonian theory, we show that this sequence is non-γ-encoded and that it reintroduces the |m| = 1 spatial component of the Chemical Shift Anisotropy (CSA) of the irradiated isotope and its heteronuclear dipolar interactions. Using numerical simulations and one-dimensional (1D) Al-{P} through-space D-HMQC (Dipolar Heteronuclear Multiple-Quantum Correlation) experiments on VPI-5, we compare the performances of this recoupling to those of other non-γ-encoded |m| = 1 heteronuclear recoupling schemes: REDOR (Rotational-Echo DOuble Resonance), SFAM (Simultaneous Frequency and Amplitude Modulation) and R4(tt).

View Article and Find Full Text PDF

The current study reports on the relaxation behaviour of lithium silicate based glasses as probed by NMR spectroscopy. A total of four glass compositions were studied with the parent composition being 28LiO-72SiO, and added dopants of Al and B. All the compositions showed significant differences in the NMR spectra of both annealed and non-annealed glasses demonstrating the structural relaxation behaviour.

View Article and Find Full Text PDF

The present study has investigated the structure of four niobium phosphates compounds using P MAS NMR spectroscopy. Niobium Nb decoupling, applied during P NMR acquisition led to a resolution enhancement by a factor of 2-3, which allowed distinguish phosphorous sites separated by 1 ppm or less. The assignment of P spectra has been completed by use of first-principles calculations derived from the original XRD structures.

View Article and Find Full Text PDF

In this paper, we derive a new model to determine the distribution of silicate units in binary glasses (or liquids). The model is based on statistical mechanics and assumes grand canonical ensemble of silicate units which exchange energy and network modifiers from the reservoir. This model complements experimental techniques, which measure short range order in glasses such as nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Glass thin films (with nanometer to micrometer thicknesses) are promising in numerous applications, both as passive coatings and as active components. Self-healing is a feature of many current technological developments as a means of increasing the lifetime of materials. In the context of these developments, we report on the elaboration of the first self-healing glassy thin-film coating developed specifically for high-temperature applications.

View Article and Find Full Text PDF

Silver aluminophosphate glasses have been investigated as matrices for the immobilization of radioactive iodine. In this study, up to 28mol% AgI have been incorporated without volatilization thanks to a low temperature synthesis protocol. Alumina was added in the composition in order to increase the glass transition temperature for a better thermal stability in a repository conditions.

View Article and Find Full Text PDF

In this short review, we discuss the ability to reproduce NMR parameters in the case of phosphates materials through electronic structure calculation within density functional theory linear response. Indeed, the gauge-including projector-augmented wave is today largely used by the solid-state NMR community as a tool for structural determination and it has been applied to a large variety of materials. We emphasise on the crucial points that should be taken into account to perform such calculations.

View Article and Find Full Text PDF

In the present study, we used a combination of (17)O NMR methods at a high magnetic field with first-principles calculations in order to characterize the oxygen sites in a series of hydroxylated sodium phosphate compounds, namely the hydrogen pyrophosphate Na(2)H(2)P(2)O(7) and the hydrogen orthophosphates NaH(2)PO(4), NaH(2)PO(4) x H(2)O and NaH(2)PO(4) x 2 H(2)O. The chemical shifts and quadrupolar parameters of these compounds were interpreted in terms of local and semi-local environment, i.e.

View Article and Find Full Text PDF

In situ high-temperature healing of cracks in composites made of glass and vanadium boride (VB) particles was observed using an environmental scanning electron microscope equipped with a high-temperature chamber (HT-ESEM). HT-ESEM is an adequate tool for studying the self-healing property of these materials. The change in crack length as a function of redox atmospheric conditions is reported.

View Article and Find Full Text PDF

The assignment of high-field (18.8 T) (17)O MAS and 3QMAS spectra has been completed by use of first-principles calculations for three crystalline sodium phosphates, Na 3P 3O 9, Na 5P 3O 10, and Na 4P 2O 7. In Na 3P 3O 9, the calculated parameters, quadrupolar constant ( C Q), quadrupolar asymmetry (eta Q), and the isotropic chemical shift (delta cs) correspond to those deduced experimentally, and the calculation is mandatory to achieve a complete assignment.

View Article and Find Full Text PDF

Heating phosphate compounds under (17)O-enriched water vapour is an easy and rapid method to prepare homogeneously enriched and pure samples for the acquisition of (17)O NMR spectra with a good sensitivity.

View Article and Find Full Text PDF

The recently introduced concept of soft pulse added mixing (SPAM) is used in two-dimensional heteronuclear correlation (HETCOR) NMR experiments between half-integer quadrupolar and spin-1/2 nuclei. The experiments employ multiple quantum magic angle spinning (MQMAS) to remove the second order quadrupolar broadening and cross polarization (CP) or refocused INEPT for magnetization transfer. By using previously unexploited coherence pathways, the efficiency of SPAM-MQ-HETCOR NMR is increased by a factor of almost two without additional optimization.

View Article and Find Full Text PDF

A complex mixture resulting from the devitrification of an aluminophosphate glass has been studied for the first time using a combination of homo- and heteronuclear solid-state NMR sequences that offers the advantage of subsequent quantification.

View Article and Find Full Text PDF

We show that by combining the intrinsically larger (with respect to MQMAS) efficiency of Double-Quantum Filtered Satellite-Transition MAS (DQF-STMAS), with the large S/N gain of the Soft-Pulse Added Mixing (SPAM) concept, a new very sensitive high-resolution solid-state NMR method can be obtained for semi-integer quadrupolar nuclei.

View Article and Find Full Text PDF

17O enriched sodium borophosphate glasses were prepared from isotopically enriched NaPO3 and H3BO3. These glasses have been studied by 17O, 11B and 31P NMR including 17O and 11B multiple quantum magic angle sample spinning (MQMAS), 11B-31P heteronuclear correlation (HETCOR) NMR and 11B{31P} rotational echo double resonance (REDOR). For comparison, the crystalline borophosphates BPO4 and Na5B2P3O13 were included in the investigations.

View Article and Find Full Text PDF