Lesch-Nyhan disease (LND) is an X-linked metabolic disease caused by various mutations in the gene HPRT1 encoding an enzyme of purine metabolism, hypoxanthine guanine phosphoribosyltransferase (HPRT). In its most severe form, LND patients suffer from overproduction of uric acid along with neurological or behavioural difficulties including self-injurious behaviours. To gain more insight into pathogenesis, we compared the transcriptome from human LND fibroblasts to normal human fibroblasts using a microarray with 60,000 probes corresponding to the entire human genome.
View Article and Find Full Text PDFWe describe an infant affected by adenine phosphoribosyltransferase (APRT) deficiency diagnosed at 18 months of age with a de novo mutation that has not been previously reported. APRT deficiency is a rare defect of uric acid catabolism that leads to the accumulation of 2,8 dihydroxyadenine (2,8-DHA), a highly insoluble substance excreted by the kidneys that may precipitate in urine and form stones. The child suffered from renal colic due to a stone found in the peno-scrotal junction of the bulbar urethra.
View Article and Find Full Text PDFHypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency results in Lesch-Nyhan disease (LND), where affected individuals exhibit a characteristic neurobehavioral disorder that has been linked with dysfunction of dopaminergic pathways of the basal ganglia. Since the functions of HPRT, a housekeeping enzyme responsible for recycling purines, have no direct relationships with the dopaminergic pathways, the mechanisms whereby HPRT deficiency affect them remain unknown. The current studies demonstrate that HPRT deficiency influences early developmental processes controlling the dopaminergic phenotype, using several different cell models for HPRT deficiency.
View Article and Find Full Text PDF