Publications by authors named "Lionel Meyer"

Current treatments in multiple sclerosis (MS) are modulating the inflammatory component of the disease, but no drugs are currently available to repair lesions. Our study identifies in MS patients the overexpression of Plexin-A1, the signalling receptor of the oligodendrocyte inhibitor Semaphorin 3A. Using a novel type of peptidic antagonist, we showed the possibility to counteract the Sema3A inhibitory effect on oligodendrocyte migration and differentiation in vitro when antagonizing Plexin-A1.

View Article and Find Full Text PDF

The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets.

View Article and Find Full Text PDF

The axonal growth cone is a specialized structure enabling axon extension and proper guidance to its target by sensing the extracellular environment. A growth cone collapse assay is a popular approach designed to characterize the inhibitory effect of secreted guidance cues in vitro. However, the actin cytoskeleton of the growth cone is very sensitive to various factors like physical impact, temperature, and acidity of environment that may also induce responses resembling those of guidance signals.

View Article and Find Full Text PDF

The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients.

View Article and Find Full Text PDF

Breast cancer is still a deadly disease despite major achievements in targeted therapies designed to block ligands or ligand-binding subunits of major tyrosine kinase receptors. Relapse is significant and metastases deleterious, which demands novel strategies for fighting this disease. Here, we report a proof-of-concept experiment demonstrating that small peptides interfering with the transmembrane domain of the tyrosine kinase epidermal growth factor receptor ErbB2 exhibit anticancer properties when used at micromolar dosages in a genetically engineered mouse model of breast cancer.

View Article and Find Full Text PDF