The computation of scattering amplitudes in the presence of non-trivial background gauge fields is an important but extremely difficult problem in quantum field theory. In even the simplest backgrounds, obtaining explicit formulae for processes involving more than a few external particles is often intractable. Recently, it has been shown that remarkable progress can be made by considering background fields which are chiral in nature.
View Article and Find Full Text PDFAlday and Maldacena conjectured an equivalence between string amplitudes in AdS_{5}×S^{5} and null polygonal Wilson loops in planar N=4 super-Yang-Mills (SYM) theory. At strong coupling this identifies SYM amplitudes with areas of minimal surfaces in anti-de Sitter space. For minimal surfaces in AdS_{3}, we find that the nontrivial part of these amplitudes, the remainder function, satisfies an integrable system of nonlinear differential equations, and we give its Lax form.
View Article and Find Full Text PDFWe prove results for the study of the double copy and tree-level colour/kinematics duality for tree-level scattering amplitudes using the properties of Lie polynomials. We show that the '-map' that was defined to simplify super-Yang-Mills multiparticle superfields is in fact a Lie bracket. A generalized KLT map from Lie polynomials to their dual is obtained by studying our new Lie bracket; the matrix elements of this map yield a recently proposed 'generalized KLT matrix', and this reduces to the usual KLT matrix when its entries are restricted to a basis.
View Article and Find Full Text PDFWe review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of , the moduli space of points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle , the bundle of forms with logarithmic singularities on the divisor as the twistor space, and the space of momentum invariants of massless particles subject to momentum conservation as the analogue of space-time.
View Article and Find Full Text PDFWe present all-multiplicity formulas for the tree-level scattering of gluons and gravitons in the maximal helicity violating (MHV) helicity configuration, calculated in certain chiral strong fields. The strong backgrounds we consider are self-dual plane waves in gauge theory and general relativity, which are treated exactly and admit a well-defined S matrix. The gauge theory background-coupled MHV amplitude is simply a dressed analog of the familiar Parke-Taylor formula, but the gravitational version has nontrivial new structures due to graviton tails.
View Article and Find Full Text PDFWe introduce a spinorial version of the scattering equations, the polarized scattering equations, that incorporates spinor polarization data. They underpin new formulas for tree-level scattering amplitudes in six dimensions that directly extend to maximal supersymmetry. We find new ingredients for integrands for super Yang-Mills theory, gravity, M5 and D5 branes.
View Article and Find Full Text PDFProc Math Phys Eng Sci
October 2017
We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology.
View Article and Find Full Text PDFThe scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere.
View Article and Find Full Text PDFWe develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions.
View Article and Find Full Text PDF