Publications by authors named "Lionel M Chow"

Lactate is used as an energy source by producer cells or shuttled to neighboring cells and tissues. Both glucose and lactate fulfill the bioenergetic demand of neurons, the latter imported from astrocytes. The contribution of astrocytic lactate to neuronal bioenergetics and the mechanisms of astrocytic lactate production are incompletely understood.

View Article and Find Full Text PDF

In the version of this Article originally published, in ref. 34 the first author's name was spelled incorrectly. The correct reference is: Rodón, L.

View Article and Find Full Text PDF

In the version of this Article originally published, the competing interests statement was missing. The authors declare no competing interests; this statement has now been added in all online versions of the Article.

View Article and Find Full Text PDF

Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM).

View Article and Find Full Text PDF

Background: Diffuse intrinsic pontine glioma (DIPG) is a high-grade brainstem glioma of children with dismal prognosis. There is no single unifying model about the cell of origin of DIPGs. Proliferating cells in the developing human and mouse pons, the site of DIPGs, express neural stem/progenitor cell (NPC) markers, including Sox2, nestin, vimentin, Olig2, and glial fibrillary acidic protein, in an overlapping and non-overlapping manner, suggesting progenitor cell heterogeneity in the pons.

View Article and Find Full Text PDF

Loss of the tumor suppressor gene PTEN exerts diverse outcomes on cancer in different developmental contexts. To gain insight into the effect of its loss on outcomes in the brain, we conditionally inactivated the murine Pten gene in neonatal neural stem/progenitor cells. Pten inactivation created an abnormal perivascular proliferative niche in the cerebellum that persisted in adult animals but did not progress to malignancy.

View Article and Find Full Text PDF

Introduction: The subventricular zone (SVZ) has been implicated in the pathogenesis of glioblastoma. Whether molecular subtypes of glioblastoma arise from unique niches of the brain relative to the SVZ remains largely unknown. Here, we tested whether these subtypes of glioblastoma occupy distinct regions of the cerebrum and examined glioblastoma localization in relation to the SVZ.

View Article and Find Full Text PDF

Although bevacizumab has not proven effective in adults with newly diagnosed high-grade gliomas (HGG), feasibility in newly diagnosed children with diffuse intrinsic pontine gliomas (DIPG) or HGG has not been reported in a prospective study. In a safety and feasibility study, children and young adults with newly diagnosed HGG received radiotherapy (RT) with bevacizumab (10 mg/kg: days 22, 36) and temozolomide (75-90 mg/m(2)/day for 42 days) followed by bevacizumab (10 mg/kg, days 1, 15), irinotecan (125 mg/m(2), days 1, 15) and temozolomide (150 mg/m(2)/day days 1-5). DIPG patients did not receive temozolomide.

View Article and Find Full Text PDF

We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells served as controls.

View Article and Find Full Text PDF

The multifunctional AMPK-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor that plays an important role in cell proliferation, growth, and survival. It remains unclear whether AMPK functions as a tumor suppressor or a contextual oncogene. This is because although on one hand active AMPK inhibits mammalian target of rapamycin (mTOR) and lipogenesis--two crucial arms of cancer growth--AMPK also ensures viability by metabolic reprogramming in cancer cells.

View Article and Find Full Text PDF

Saposin C-dioleoylphosphatidylserine (SapC-DOPS) nanovesicles are a nanotherapeutic which effectively target and destroy cancer cells. Here, we explore the systemic use of SapC-DOPS in several models of brain cancer, including glioblastoma multiforme (GBM), and the molecular mechanism behind its tumor-selective targeting specificity. Using two validated spontaneous brain tumor models, we demonstrate the ability of SapC-DOPS to selectively and effectively cross the blood-brain tumor barrier (BBTB) to target brain tumors in vivo and reveal the targeting to be contingent on the exposure of the anionic phospholipid phosphatidylserine (PtdSer).

View Article and Find Full Text PDF

Oligodendrocytes-the myelin-forming cells of the central nervous system-can be regenerated during adulthood. In adults, new oligodendrocytes originate from oligodendrocyte progenitor cells (OPCs), but also from neural stem cells (NSCs). Although several factors supporting oligodendrocyte production have been characterized, the mechanisms underlying the generation of adult oligodendrocytes are largely unknown.

View Article and Find Full Text PDF

Background: Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a life-threatening brain tumor. Accumulating evidence suggests that eradication of glioma stem-like cells (GSCs) in GBM is essential to achieve cure. The transcription factor FOXM1 has recently gained attention as a master regulator of mitotic progression of cancer cells in various organs.

View Article and Find Full Text PDF

Primary glial brain tumors account for the majority of primary brain tumors in children. They are classified as low-grade gliomas (LGG) or high-grade gliomas (HGG), based on specific pathologic characteristics of the tumor, resulting in disparate clinical prognoses. Surgery is a mainstay of treatment for HGG, although it is not curative, and adjuvant therapy is required.

View Article and Find Full Text PDF

Neuronal precursors, generated throughout life in the subventricular zone, migrate through the rostral migratory stream to the olfactory bulb where they differentiate into interneurons. We found that the PI3K-Akt-mTorc1 pathway is selectively inactivated in migrating neuroblasts in the subventricular zone and rostral migratory stream, and activated when these cells reach the olfactory bulb. Postnatal deletion of Pten caused aberrant activation of the PI3K-Akt-mTorc1 pathway and an enlarged subventricular zone and rostral migratory stream.

View Article and Find Full Text PDF

High-grade astrocytoma remains a significant challenge to the clinician and researcher alike. Intense study of the molecular pathogenesis of these tumors has allowed identification of frequent genetic alterations and critical core pathways in this disease. The use of novel mouse genetic tools to study the consequence of specific mutations in brain has led to the development of multiple representative genetically engineered mouse models that provided novel insights into gliomagenesis.

View Article and Find Full Text PDF

Both 2-mercaptoethane sulfonate sodium (mesna) and amifostine's active metabolite WR-1065 are thiol-based cytoprotective agents that are critical components of high-dose chemotherapy regimens used to treat various cancers in both adults and children. This case report describes a patient with a supratentorial primitive neuroectodermal tumor who developed severe drug reactions to both mesna and amifostine/WR-1065, suggesting that the thiol component of these agents triggered the adverse reactions. This report highlights the clinical presentation of drug-induced hypersensitivity syndrome in the context of pediatric oncology and the supportive care measures that, if implemented rapidly, may diminish the reaction severity and allow successful completion of chemotherapy.

View Article and Find Full Text PDF

Mutations in the PTEN, TP53, and RB1 pathways are obligate events in the pathogenesis of human glioblastomas. We induced various combinations of deletions in these tumor suppressors in astrocytes and neural precursors in mature mice, resulting in astrocytomas ranging from grade III to grade IV (glioblastoma). There was selection for mutation of multiple genes within a pathway, shown by somatic amplifications of genes in the PI3K or Rb pathway in tumors in which Pten or Rb deletion was an initiating event.

View Article and Find Full Text PDF

The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis.

View Article and Find Full Text PDF

It was previously reported that the ciliary epithelium (CE) of the mammalian eye contains a rare population of cells that could produce clonogenic self-renewing pigmented spheres in culture. Based on their ability to up-regulate genes found in retinal neurons, it was concluded that these sphere-forming cells were retinal stem cells. This conclusion raised the possibility that CE-derived retinal stem cells could help to restore vision in the millions of people worldwide who suffer from blindness associated with retinal degeneration.

View Article and Find Full Text PDF

Two transgenic mouse lines expressing an inducible form of the Cre recombinase (CreER) under the control of the human GFAP promoter have been generated and characterized. In adult mice, expression of the fusion protein is largely confined to astrocytes in all regions of the central nervous system. Minimal spontaneous Cre activity was detected and recombination was efficiently induced by intraperitoneal administration of tamoxifen in adult mice.

View Article and Find Full Text PDF

Unlike lower vertebrates, mammals are unable to replace damaged mechanosensory hair cells (HCs) in the cochlea. Recently, ablation of the retinoblastoma protein (Rb) in undifferentiated mouse HC precursors was shown to cause cochlear HC proliferation and the generation of new HCs, raising the hope that inactivation of Rb in postmitotic HCs could trigger cell division and regenerate functional HCs postnatally. Here, we acutely inactivated Rb in nearly all cochlear HCs of newborn mice, using a newly developed HC-specific inducible Cre mouse line.

View Article and Find Full Text PDF

Purpose: Reduced-intensity protocols for pediatric Hodgkin's lymphoma are aimed at preserving excellent relapse-free survival while decreasing the incidence of late effects.

Patients And Methods: We retrospectively reviewed the outcome of 123 children treated consecutively for Hodgkin's lymphoma at a single institution. Patients with stages I-IIIB disease received three cycles of mechlorethamine, vincristine, procarbazine, and prednisone (MOPP)/ doxorubicin, bleomycin, and vinblastine (ABV) followed by 15 Gy of extended-field irradiation, while those with stage IV disease were treated with six to eight cycles of MOPP/ABV chemotherapy with or without radiotherapy.

View Article and Find Full Text PDF

A transgenic mouse line expressing the CreER(TM) fusion protein under the control of the Math1 enhancer was generated. Expression of the transgene in the postnatal mouse was restricted to hair cells of the inner ear and granule neurons in the external granule layer of the cerebellum in a temporally regulated manner. Cre activity was virtually nonexistent in uninduced mice; however, treatment of newborn pups with tamoxifen, leading to nuclear translocation of the fusion protein, resulted in efficient recombination at LoxP sites in the appropriate cell types.

View Article and Find Full Text PDF