After total hip arthroplasty, the stress shielding effect can occur due to the difference of stiffness between the metallic alloy of the stems and the host bone, which may cause a proximal bone loss. To overcome this problem, a low-modulus metastable β Ti-20Zr-3Mo-3Sn alloy composition has recently been designed to be potentially used for the cementless femoral hip stems. After having verified experimentally that the β alloy has a low modulus of around 50 GPa, a finite element analysis was performed on a Ti-20Zr-3Mo-3Sn alloy hip prosthesis model to evaluate the influence of a reduced modulus on stress shielding and stress fields in both stem and bone compared with the medical grade Ti-6Al-4V alloy whose elastic modulus reached 110 GPa.
View Article and Find Full Text PDFNew Ni-free superelastic β-titanium alloys from the Ti-Zr-Nb-Sn system have been designed in this study to replace the NiTi alloy currently used for self-expanding endovascular stents. The simulation results, carried out by finite element analysis (FEA) on two β-type Ti-Zr-Nb-Sn alloys using a commonly used superelastic constitutive model, were in good agreement with the experimental uniaxial tension data. An ad-hoc self-expanding coronary stent was specifically designed for the present study.
View Article and Find Full Text PDF