Simulating photon dynamics in strong light-matter coupling situations via classical trajectories is proving to be powerful and practical. Here, we analyze the performance of the approach through the lens of the exact factorization approach. Since the exact factorization enables a rigorous definition of the potentials driving the photonic motion, it allows us to identify that the underestimation of photon number and intensities observed in earlier work is primarily due to an inadequate accounting of light-matter correlation in the classical Ehrenfest force rather than errors from treating the photons quasiclassically per se.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2021
Simulating electron-ion dynamics using time-dependent density functional theory within an Ehrenfest dynamics scheme can be done in two ways that are in principle exact and identical: propagating time-dependent electronic Kohn-Sham equations or propagating electronic coefficients on surfaces obtained from linear-response. We show here that using an approximate functional leads to qualitatively different dynamics in the two approaches. We argue that the latter is more accurate because the functionals are evaluated on domains close to the ground state where currently used approximations perform better.
View Article and Find Full Text PDFThe exact time-dependent potential energy surface driving the nuclear dynamics was recently shown to be a useful tool to understand and interpret the coupling of nuclei, electrons, and photons in cavity settings. Here, we provide a detailed analysis of its structure for exactly solvable systems that model two phenomena: cavity-induced suppression of proton-coupled electron-transfer and its dependence on the initial state, and cavity-induced electronic excitation. We demonstrate the inadequacy of simply using a weighted average of polaritonic surfaces to determine the dynamics.
View Article and Find Full Text PDFThe standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality, the quantum cavity supports a range of photon modes. Here, we demonstrate that as more photon modes are accounted for, physicochemical phenomena can dramatically change, as illustrated by the cavity-induced suppression of the important and ubiquitous process of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-modes, we find that self-polarization effects become essential, and we introduce the concept of self-polarization-modified Born-Oppenheimer surfaces as a new construct to analyze dynamics.
View Article and Find Full Text PDFWhen a system has evolved far from a ground-state, the adiabatic approximations commonly used in time-dependent density functional theory calculations completely fail in some applications, while giving qualitatively good predictions in others, and sometimes even quantitative predictions. It is not clearly understood why this is so, and developing practical approximations going beyond the adiabatic approximation remains a challenge. This paper explores three different lines of investigation.
View Article and Find Full Text PDFWe present a quantum electronic embedding method derived from the exact factorization approach to calculate static properties of a many-electron system. The method is exact in principle but the practical power lies in utilizing input from a low-level calculation on the entire system in a high-level method computed on a small fragment, as in other embedding methods. Here, the exact factorization approach defines an embedding Hamiltonian on the fragment.
View Article and Find Full Text PDFWe find and analyze the exact time-dependent potential energy surface driving the proton motion for a model of cavity-induced suppression of proton-coupled electron transfer. We show how, in contrast to the polaritonic surfaces, its features directly correlate to the proton dynamics and we discuss cavity modifications of its structure responsible for the suppression. The results highlight the interplay between nonadiabatic effects from coupling to photons and coupling to electrons and suggest caution is needed when applying traditional dynamics methods based on polaritonic surfaces.
View Article and Find Full Text PDFThe exact factorization (EF) approach to coupled electron-ion dynamics recasts the time-dependent molecular Schrödinger equation as two coupled equations, one for the nuclear wavefunction and one for the conditional electronic wavefunction. The potentials appearing in these equations have provided insight into non-adiabatic processes, and new practical non-adiabatic dynamics methods have been formulated starting from these equations. Here, we provide a first demonstration of a self-consistent solution of the exact equations, with a preliminary analysis of their stability and convergence properties.
View Article and Find Full Text PDFJ Chem Theory Comput
March 2019
We present a new class of nonadiabatic approximations in time-dependent density functional theory derived from an exact expression for the time-dependent exchange-correlation potential. The approximations reproduce dynamical step and peak features in the exact potential that are missing in adiabatic approximations. Central to this approach is an approximation for the one-body reduced density-matrix as a functional of the Kohn-Sham density-matrix, and we examine the performance of two such approximations on four examples.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2018
A decomposition of the exact exchange-correlation potential of time-dependent density functional theory into an interaction component and a kinetic component offers a new starting point for non-adiabatic approximations. The components are expressed in terms of the exchange-correlation hole and the difference between the one-body density matrix of the interacting and Kohn-Sham systems, which must be approximated in terms of quantities accessible from the Kohn-Sham evolution. We explore several preliminary approximations, evaluate their fulfillment of known exact conditions, and test their performance on simple model systems for which available exact solutions indicate the significance of going beyond the adiabatic approximation.
View Article and Find Full Text PDFWe identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection.
View Article and Find Full Text PDF