In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau.
View Article and Find Full Text PDFTauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions.
View Article and Find Full Text PDFAbout 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-β precursor protein (APP). PSEN1/2 catalyze production of Aβ peptides of different length from APP. Aβ peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD.
View Article and Find Full Text PDFCleavage of Amyloid precursor protein by β- and γ-secretases lead to Aβ formation. The widely accepted pathogenic model states that these mutations cause AD via an increase in Aβ formation and accumulation of Aβ in Amyloid plaques. APP mutations cause early onset familial forms of Alzheimer's disease (FAD) in humans.
View Article and Find Full Text PDFBDNF-oxytocin interactions in the brain are implicated in mammalian maternal behavior. We found that BDNF gene expression is increased in the hippocampus of rat mothers that show increased pup licking/grooming (high LG mothers) compared to low LG mothers. High LG mothers also showed increased BDNF protein levels in the nucleus accumbens (nAcc).
View Article and Find Full Text PDFThe assembly of tau protein into abnormal filaments and brain cell degeneration are characteristic of a number of human neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Several murine models have been generated to better understand the mechanisms contributing to tau assembly and neurodegeneration. Taking advantage of the more elaborate central nervous system and higher cognitive abilities of the rat, we generated a model expressing the longest human tau isoform (2N4R) with the P301S mutation.
View Article and Find Full Text PDFGeneral DNA hypomethylation is associated with Alzheimer's disease (AD), but it is unclear when DNA hypomethylation starts or plays a role in AD pathology or whether DNA re-methylation would rescue early amyloid-related cognitive impairments. In an APP transgenic mouse model of AD-like amyloid pathology we found that early intraneuronal amyloid beta build-up is sufficient to unleash a global and beta-site amyloid precursor protein cleaving enzyme 1 (bace-1) DNA demethylation in AD-vulnerable brain regions. S-adenosylmethionine administration at these early stages abolished this hypomethylation, diminished the amyloid pathology and restored cognitive capabilities.
View Article and Find Full Text PDFWe previously demonstrated that sodium butyrate is neuroprotective in Huntington's disease (HD) mice and that this therapeutic effect is associated with increased expression of mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1/DUSP1). Here we show that enhancing MKP-1 expression is sufficient to achieve neuroprotection in lentiviral models of HD. Wild-type MKP-1 overexpression inhibited apoptosis in primary striatal neurons exposed to an N-terminal fragment of polyglutamine-expanded huntingtin (Htt171-82Q), blocking caspase-3 activation and significantly reducing neuronal cell death.
View Article and Find Full Text PDFBackground: Mood disorders are polygenic disorders in which the alteration of several susceptibility genes results in dysfunctional mood regulation. However, the molecular mechanisms underlying their transcriptional dysregulation are still unclear. The transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) have been implicated in rodent models of depression.
View Article and Find Full Text PDFThree methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides.
View Article and Find Full Text PDF