Objectives: This study aims to demonstrate reduced iodine contrast media (CM) in routine abdominal CT scans in portal venous phase (PVP) using a photon-counting detector CT (PCD-CT) compared to total body weight (TBW) and kV-adapted CM injection protocols on a state-of-the-art energy-integrating detector CT (EID-CT) while maintaining sufficient image quality (IQ).
Materials And Methods: Consecutive contrast-enhanced abdominal PVP CT scans from an EID-CT (Nov 2022-March 2024) and a PCD-CT (Sep 2023-Dec 2023) were compared. CM parameters (total iodine load (TIL), iodine delivery rate (IDR) and dosing factor (DF)) were reported.
Objective: Photon-counting detector computed tomography (PCD-CT) enables spectral data acquisition of CT angiographies allowing for reconstruction of virtual monoenergetic images (VMIs) in routine practice. Specifically, it has potential to reduce the blooming artifacts associated with densely calcified plaques. However, calcium blooming and iodine attenuation are inversely affected by energy level (keV) of the VMIs, creating a challenge for contrast media (CM) injection protocol optimization.
View Article and Find Full Text PDFObjectives: Calcified plaques induce blooming artifacts in coronary computed tomography angiography (CCTA) potentially leading to inaccurate stenosis evaluation. Tungsten represents a high atomic number, experimental contrast agent with different physical properties than iodine. We explored the potential of a tungsten-based contrast agent for photon-counting detector (PCD) CCTA in heavily calcified coronary vessels.
View Article and Find Full Text PDFBackground: Previous research on the necessity to reduce the viscosity of contrast media (CM) by either prewarming CM before injection during computed tomography (CT) or by using less concentrated CM has yielded conflicting results. In addition, there is limited evidence on patient comfort.
Objectives: The aim of the study was to examine if prewarming CM, with varying CM concentrations, is superior to CM at room temperature, with respect to patient comfort and safety in CT.