Publications by authors named "Linzhe Wang"

In this paper, we developed a paper-based fluorescent sensor using functional composite materials composed of graphene quantum dots (GQDs) coated with molecularly imprinted polymers (MIPs) for the selective detection of tetracycline (TC) in water. GQDs, as eco-friendly fluorophores, were chemically grafted onto the surface of paper fibers. MIPs, serving as the recognition element, were then wrapped around the GQDs via precipitation polymerization using 3-aminopropyltriethoxysilane (APTES) as the functional monomer.

View Article and Find Full Text PDF

Three-dimensional (3D) porous graphene-based materials have displayed attractive electrochemical catalysis and sensing performances, benefiting from their high porosity, large surface area, and excellent electrical conductivity. In this work, a novel electrochemical sensor based on 3D porous reduced graphene (3DPrGO) and ion-imprinted polymer (IIP) was developed for trace cadmium ion (Cd(II)) detection in water. The 3DPrGO was synthesized in situ at a glassy carbon electrode (GCE) surface using a polystyrene (PS) colloidal crystal template and the electrodeposition method.

View Article and Find Full Text PDF

A novel multi-functional microfluidic paper-based analytical device (μPAD) integrated with ion imprinted polymers (IIPs) was proposed for specific, portable and low-cost detection of cadmium (Cd(II)) in water. The IIP was grafted on paper and integrated into the μPAD for separation of Cd(II) through multi-layer design. The paper-based screen printed carbon electrode (pSPCE) modified with reduced graphene oxide was fabricated and combined with the μPAD for electrochemical sensing of the separated Cd(II).

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state Li metal batteries (SSLMBs) offer great safety and energy density, but struggle with poor contact between solid lithium and electrodes, leading to high impedance and dendrite formation.
  • An innovative method introduces an ion-electron mixing (IEM) interface using LiAlTi(PO) (LATP), which creates a fast lithium-ion conductor that enhances lithium movement and reduces dendrite growth.
  • Batteries with the IEM@LATP electrolyte can cycle stably for over 1000 hours at 0.1 mA/cm, and even at higher currents of 3.0 mA/cm, showing potential for practical use in SSLMBs and possibly other solid-state batteries.
View Article and Find Full Text PDF

Aqueous zinc-ion batteries (ZIBs) have received great attention due to their environmental friendliness and high safety. However, cathode materials with slow diffusion dynamics and dissolution in aqueous electrolytes hindered their further application. To address these issues, in this work, a MnO-2 cathode doped with 1.

View Article and Find Full Text PDF

In recent years, with the rapid development of electric vehicles, the ever-fluctuating cobalt price has become a decisive constraint on the supply chain of the lithium-ion (Li-ion) battery industry. To address these challenges, a new and unreported cobalt-free (Co-free) material with a general formula of LiNiFeMnO (NFM) is introduced. This Co-free material is synthesized via the coprecipitation method and examined by using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) to investigate the morphological, crystal-structure, and electrochemical properties.

View Article and Find Full Text PDF

Carbon materials have been widely used as nanozymes in bioapplications, attributing to their intrinsic enzyme-like activities. Nitrogen (N)-doping has been explored as a promising way to improve the activity of carbon material-based nanozymes (CMNs). However, hindered by the intricate N dopants, the real active site of N-doped CMNs (N-CMNs) has been rarely investigated, which subsequently retards the further progress of high-performance N-CMNs.

View Article and Find Full Text PDF