Publications by authors named "Linyi Bian"

Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high-efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/parallel computing, and probabilistic inference. Here a novel multifunctional memristor is proposed and demonstrated based on metalloporphyrin/oxide hybrid heterojunction, in which the metalloporphyrin layer allows for dual electronic/ionic transport.

View Article and Find Full Text PDF

Atom-scale modulation of electronic regulation in nonprecious-based electrocatalysts is promising for efficient catalytic activities. Here, hierarchically hollow VOOH nanostructures are rationally constructed by partial iron substitution and systematically investigated for electrocatalytic water splitting. Benefiting from the hierarchically stable scaffold configuration, highly electrochemically active surface area, the synergistic effect of the active metal atoms, and optimal adsorption energies, the 3% Fe (mole ratio) substituted electrocatalyst (VOOH-3Fe) exhibits a low overpotential of 90 and 195 mV at 10 mA cm for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, respectively, superior than the other samples with a different substituted ratio.

View Article and Find Full Text PDF

Three diazafluorene derivatives triphenylamine (TPA)(PDAF) ( = 1, 2, 3) serving as small molecular elements are designed and synthesized via concentrated sulfuric acid mediated Friedel-Crafts reaction. With highly nonplanar topological configuration, TPA(PDAF) shows weaker intermolecular interaction in the solid states and thus exhibits single nanomolecular behavior, which is crucial for charge stored and retained in an organic field-effect transistor (OFET) memory device. Furthermore, diazafluorene derivatives possess a completely separate highest occupied molecular orbital/lowest unoccupied molecular orbital, which offers ideal hole and electron trapping sites.

View Article and Find Full Text PDF

Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules.

View Article and Find Full Text PDF

Three dialkylthio benzo[1,2-b:4,5-b']dithiophene (S-BDT) based polymers have been developed using different accepting units to tune their bandgaps. The polymer:PC71BM solar cells achieved the highest power conversion efficiency (PCE) of 4.51% without any post-treatment (such as annealing and solvent additive) in conventional single-cell devices.

View Article and Find Full Text PDF