Publications by authors named "Linyi Bai"

Intelectin is a lectin with the capacity to recognize and bind to carbohydrates. In this study, we successfully cloned cITLN3 from common carp, which consists of a signal peptide domain, a FReD domain, and an intelectin domain. The expression levels of cITLN3 were detected in various organs of common carp, including the liver, head kidney, spleen, foregut, midgut, and hindgut, with the highest expression observed in the liver.

View Article and Find Full Text PDF

Aquaculture plays an increasingly important if not critical role in the current and future world food supply. Aeromonas hydrophila, a heterotrophic, Gram-negative, bacterium found in fresh or brackish water in warm climates poses a serious threat to the aquaculture industry in many areas, causing significant economic losses. Rapid, portable detection methods of A.

View Article and Find Full Text PDF

PGRP is a family of pattern recognition molecules of the innate immune system. PGRPs are conserved from insects to mammals and have diverse functions in antimicrobial defense. Here we cloned a common carp PGRP ortholog, CcPGRP2 containing a conserved C-terminal PGRP domain.

View Article and Find Full Text PDF

Seneca Valley virus (SVV) is related to vesicular disease in pigs, and its clinical symptoms are indistinguishable from other notifiable clinical symptoms of vesicular disease such as foot-and-mouth disease. The rapid and accurate detection of SVV is essential to confirm the pathogenic factors and initiate the implementation of control measures. The development of a rapid, simple, convenient, and low-cost molecular (nucleic acid amplification) test that can be used at the sample collection point has been identified as a key component for controlling SVV.

View Article and Find Full Text PDF

Sensory memory is capable of recording information and giving feedback based on external stimuli. Haptic memory in particular can retain the sensation of the interaction between the human body and the environment and help humans to describe the physical quantities in their environment and manipulate objects in daily activities. Although sensitive and accurate tactile sensors have been produced on optical and electronic devices, their rigorous operation and equipment requirements seriously limit their further applicability.

View Article and Find Full Text PDF

We have synthesized CuO nanostructures with flake, dandelion-microsphere, and short-ribbon shapes using solution-phase methods and have evaluated their structure-performance relationship in the heterogeneous catalysis of liquid-phase oxidative coupling reactions. The formation of nanostructures and the morphological evolution were confirmed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, energy-dispersive X-ray spectroscopy, elemental mapping analysis, and Fourier transform infrared spectroscopy. CuO nanostructures with different morphologies were tested for the catalytic oxidative coupling of aromatic amines to imines under solvent-free conditions.

View Article and Find Full Text PDF

Photoacoustic tomography has emerged as a promising non-invasive imaging technique that integrates the merits of high optical contrast with high ultrasound resolution in deep scattering medium. Unfortunately, the blood background in vivo seriously impedes the quality of imaging due to its comparable optical absorption with contrast agents, especially in conventional linear photoacoustic imaging modality. In this study, we demonstrated that two hybrids consisting of gold nanorods (Au NRs) and zinc tetra(4-pyridyl)porphyrin (ZnTPP) exhibited a synergetic effect in improving optical absorption, conversion efficiency from light to heat, and thermoelastic expansion, leading to a notable enhancement in both linear (four times greater) and nonlinear (more than six times) photoacoustic signals as compared with conventional Au NRs.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created colorimetric sensors using meso-2,3-dimercaptosuccinic acid nanoframes, shaped by a metal-organic framework, to detect heavy metal ions.
  • The sensors exhibit distinct color changes when exposed to different heavy metal ions, allowing for clear identification.
  • This method enables simple and effective detection and differentiation of harmful heavy metals.
View Article and Find Full Text PDF

The abundant reserve and low cost of sodium have provoked tremendous evolution of Na-ion batteries (SIBs) in the past few years, but their performances are still limited by either the specific capacity or rate capability. Attempts to pursue high rate ability with maintained high capacity in a single electrode remains even more challenging. Here, an elaborate self-branched 2D SnS (B-SnS) nanoarray electrode is designed by a facile hot bath method for Na storage.

View Article and Find Full Text PDF

Targeted drug delivery systems having controlled drug release property with an inherent fluorescence reporter have drawn a lot of attention in nanomedicine. However, only very few prodrugs can be directly used to construct such delivery systems. Herein, we report that an amphiphilic chlorambucil-based prodrug consisting of a fluorescence reporter and a d-mannose targeting ligand could directly self-assemble into glutathione-responsive nanovesicles for selective cancer therapy and intracellular imaging.

View Article and Find Full Text PDF

Two near-infrared dyes featuring good dispersion and light-harvesting property present a remarkable nonlinear photoacoustic response in vitro and in vivo comparing with conventional gold nanorods. This study benefits the fabrication of drug delivery platforms with accurate targeting and control effect under photoacoustic image guidance.

View Article and Find Full Text PDF

With the help of rhodamine B base (RBB), novel Pd nanospheres were synthesized by a facile one-step approach. Owing to their hierarchically porous characteristics, these nanospheres exhibited highly catalytic activity for HCOOH electrooxidation (∼1.84 times and 1.

View Article and Find Full Text PDF

The lithium-sulfur (Li-S) battery presents a promising rechargeable energy storage technology for the increasing energy demand in a worldwide range. However, current main challenges in Li-S battery are structural degradation and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling, resulting in the corrosion and loss of active materials. Herein, we developed novel hybrids by employing metal-organic polyhedron (MOP) encapsulated PVP-functionalized sulfur nanoparticles (S@MOP), where the active sulfur component was efficiently encapsulated within the core of MOP and PVP as a surfactant was helpful to stabilize the sulfur nanoparticles and control the size and shape of corresponding hybrids during their syntheses.

View Article and Find Full Text PDF

Although being considered as one of the most promising cathode materials for Lithium-ion batteries (LIBs), LiNi1/3Co1/3Mn1/3O2 (NCM) is currently limited by its poor rate performance and cycle stability resulting from the thermodynamically favorable Li(+)/Ni(2+) cation mixing which depresses the Li(+) mobility. In this study, we developed a two-step method using fluffy MnO2 as template to prepare hierarchical porous nano-/microsphere NCM (PNM-NCM). Specifically, PNM-NCM microspheres achieves a high reversible specific capacity of 207.

View Article and Find Full Text PDF

Vapochromic behavior is employed to selectively monitor the vapor changes in surrounding environment, particularly for toxic gas leaking and floating detection. Thus, sensitive trapping and accurate response to different toxic vapors are critical factors in vapochromic sensing. In this work, a self-assembled hybrid that consists of fluorescent organic octahedron encapsulated by metal-organic polyhedron (MOP) is reported.

View Article and Find Full Text PDF

Structural diversity and uniformity of nanomaterials are usually prerequisites for many practical applications involving the oriented fabrication of various devices with full control over their desired physiochemical properties. Particularly in the optoelectronic field, ordered assembly inside cells is required not only for obtaining attractive configurations but also for playing an important role in the characteristics of photoconduction and conductivity. Here, we present a synergetic self-assembly driven by coordination and intermolecular interactions for the construction of organic-inorganic hybrids with multi-morphologies and tunable physical properties.

View Article and Find Full Text PDF

Integrating irreplaceable features of both covalent chemistry and noncovalent interactions into a single entity to maximize the applicability is highly desired. Here, a discovery of this type of hybrid, developed by Stupp and co-workers, is developed, where a synergistic combination of covalent and noncovalent compartments enables them to assemble by each other perfectively. The covalent compartments can grow into polymer chains assisted by a supramolecular compartment.

View Article and Find Full Text PDF

Two porous covalent organic frameworks (COFs) with good biocompatibility were employed as drug nanocarriers, where three different drugs were loaded for subsequent drug release in vitro. The present work demonstrates that COFs are applicable in drug delivery for therapeutic applications.

View Article and Find Full Text PDF

Incorporating supramolecular interaction units, crown ether rings, into metal-organic frameworks enables the docking of metal ions through complexation for enhanced performance in H2 and CO2 adsorption and lithium ion batteries.

View Article and Find Full Text PDF

The adaptive property of supramolecular building blocks facilitates noncovalent synthesis of soft materials. While it is still a challenging task, fine-tuning and precise control over topological nanostructures constructed from the self-assembly of low-molecular-weight building blocks are an important research direction to investigate the structure-property relationship. Herein, we report controlled self-assembly evolution of a low-molecular-weight building block bearing cholesterol and naphthalene-dicarboximide moieties, showing ultrasensitivity to solvent polarity.

View Article and Find Full Text PDF

Organic near-infrared (NIR) fluorescent probes have been recognized as an emerging class of materials exhibiting a great potential in advanced bioanalytical applications. However, synthesizing such organic probes that could simultaneously work in the NIR spectral range and have large Stokes shift, high stability in biological systems, and high photostability have been proven challenging. In this work, aggregation induced excimeric NIR emission in aqueous media was observed from a suitably substituted perylene monoimide (PeIm) dye.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are periodic two- or three-dimensional polymeric networks with high surface areas, low density, and designed structures. Because COFs are normally prepared based on reversible formation of covalent bonds with relatively weak stability, their structures can be easily broken or damaged due to changes in the surrounding environment. Thus, developing strategies to realize the reconstruction of COFs in order to extend their usage lifetime is crucial for practical applications.

View Article and Find Full Text PDF

The bulk heterojunction (BHJ) plays an indispensable role in organic photovoltaics, and thus has been investigated extensively in recent years. While a p-n heterojunction is usually fabricated using two different donor and acceptor materials such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), it is really rare that such a BHJ is constructed by a single entity. Here, we presented a photoirradiation-induced p-n heterojunction in naphthylamine-based organic photovoltaic cells, where naphthylamine as a typical p-type semiconductor could be oxidized under photoirradiation and transformed into a new semiconductor with the n-type character.

View Article and Find Full Text PDF

The frontispiece shows rational construction of a twofold interpenetrated metalorganic framework (MOF) with Pt O topology using an asymmetrical tricarboxylate organic linker. In spite of having structural interpenetration, the activated MOF shows high porosity along with high CO and H uptake. Details are given in the Full Paper by Ruqiang Zou and Yanli Zhao et al.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0hq8bbht1jqg83q2r6gpn9i80taha5kg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once