Background: Glucose metabolic reprogramming (GMR) is a cardinal feature of carcinogenesis and metastasis. However, the underlying mechanisms have not been fully elucidated. The aim of this study was to profile the metabolic signature of primary tumor and circulating tumor cells from metastatic colorectal cancer (mCRC) patients using integrated omics analysis.
View Article and Find Full Text PDFTumor cells undergo epithelial-mesenchymal transition (EMT), however, there is a room of disagreement in role of EMT heterogeneity to colorectal cancer metastasis (mCRC) evolution. To uncover new EMT-related metastasis proteins and pathways, we addressed the EMT status in colorectal cancer liver metastasis patient-derived CTCs to identify proteins that promote their distant metastasis. And then, we performed a comparative proteomic analysis in matched pairs of primary tumor tissues, adjacent mucosa tissues and liver metastatic tissues.
View Article and Find Full Text PDFObjective: Liver metastasis of colorectal cancer (LMCRC) is a major cause of cancer-related deaths worldwide. We can reduce the mortality rate by discerning the risk of liver metastases in patients with colorectal cancer at an early stage. Hence, we combined the use of folate receptor (FR)-labeled circulating tumor cells (FR+CTCs) and the metastasis-related marker, heat shock protein 90 (HSP90), to screen patients with colorectal cancer and explore the prognostic factors of patients with high expression of FR+CTC and HSP90.
View Article and Find Full Text PDFWorld J Surg Oncol
August 2022
Background: The morbidity and mortality of colorectal cancer (CRC) remain high, posing a serious threat to human life and health. The early diagnosis and prognostic evaluation of CRC are two major challenges in clinical practice. MTUS1 is considered a tumour suppressor and can play an important role in inhibiting cell proliferation, migration, and tumour growth.
View Article and Find Full Text PDF