Publications by authors named "Linyan Jia"

Background: Preeclampsia is a unique multisystem disorder that affects 5-8% of pregnancies. A high level of soluble fms-like tyrosine kinase-1 (sFlt-1) is a hallmark of preeclampsia that causes endothelial dysfunction. Exosomes derived from mesenchymal stem cells (MSCs) have been indicated to improve endothelial performances by transporting signals to target cells.

View Article and Find Full Text PDF

Introduction: Pregnancy is a dynamic time period associated with significant physiological changes in the cardiovascular system. It is well known that during pregnancy, the placenta secretes a variety of molecular signals, including exosomes, into the maternal circulation to adapt to increased blood volume and maintain blood pressure at normotensive levels.

Methods: In the present study, we compared the effects of exosomes derived from the peripheral blood serum of nonpregnant women (NP-Exo) and pregnant women with uncomplicated pregnancy (P-Exo) on endothelial cell function.

View Article and Find Full Text PDF

Preeclampsia (PE) is a hypertensive disorder of pregnancy characterized by maternal endothelial dysfunction and end-organ damage. Our previous work demonstrated that PE patient-derived exosomes contained higher levels of soluble FMS-like tyrosine kinase-1 (sFlt-1) and significantly induced endothelial dysfunction and PE development. However, the mechanisms underlying the effect of sFlt-1-enriched exosomes (sFlt-1-Exo) on PE development are poorly characterized.

View Article and Find Full Text PDF

Background: The placenta is an important organ for fetal and maternal health during pregnancy and impacts offspring health late in life. Defects in placental vasculature and trophoblast have been identified in several pregnancy complications. Thus, the detailed molecular profile and heterogeneity of endothelial cells and trophoblasts in placentas will aid us in better understanding placental behaviors and improving pregnancy outcomes.

View Article and Find Full Text PDF

The objective of this study was to develop aquatic collagen production from fish processing by-product skin as a possible alternative to terrestrial sources. Silver carp skin collagen (SCSC) was isolated and identified as type I collagen, and LC-MS/MS analysis confirmed the SCSC as type I collagen, where the yield of SCSC was 40.35 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • Trophoblasts are key cells in the placenta that grow and invade the uterine lining, with their activities regulated by various signaling factors, including hormones and cytokines.
  • Programmed cell death ligand 1 (PD-L1) plays a crucial role in regulating immune responses during pregnancy and has been linked to complications by influencing trophoblast function.
  • Research showed that PD-L1 levels in the placenta change with gestational age and are notably lower in preeclampsia cases, affecting trophoblast migration and invasion, suggesting PD-L1 as a potential target for addressing pregnancy-related disorders.
View Article and Find Full Text PDF

The mortality rate of elderly patients with Coronavirus Disease 2019 (COVID-19) was significantly higher than the overall mortality rate. However, besides age, leading death risk factors for the high mortality in elderly patients remain unidentified. This retrospective study included 210 elderly COVID-19 patients (aged ≥ 65 years), of whom 175 patients were discharged and 35 died.

View Article and Find Full Text PDF

Preeclampsia is a pregnancy-specific disorder that is a major cause of maternal and fetal morbidity and mortality with a prevalence of 6-8% of pregnancies. Although impaired trophoblast invasion in early pregnancy is known to be closely associated with preeclampsia, the underlying mechanisms remain elusive. Here we revealed that lysyl oxidase (LOX) and LOX-like protein 2 (LOXL2) play a critical role in preeclampsia.

View Article and Find Full Text PDF

High-risk (hr) human papillomaviruses (HPV) infection and integration has caused the majority of cervical cancer, of which E6 and E7 oncogenes are invariably retained and expressed to immortalize cells probably via affecting cell migration and invasion, and tumor metastasis. However, the underlying mechanism that mediates the procedure such as motility of cervical cancer cells within the tumor microenvironment is not well understood. Herein, we examined one possible factor-extracellular lactic acid, an end up chemical in glycolytic tumor cells, on the motility in HPV16 positive SiHa cells.

View Article and Find Full Text PDF

Angiogenesis is fundamental to normal placental development, and aberrant angiogenesis contributes substantially to placental pathologies. Placental angiogenesis is a pivotal process that plays a key mechanistic role in the elaboration of the placental villous tree, which is mainly taken by human placental microvascular endothelial cells (HPMECs), present in the fetal capillaries of chorionic villi, and macrovascular human umbilical vein endothelial cells (HUVECs) also play a role in this process. These are the two types of endothelial cells that form the placenta and differ in morphology and function.

View Article and Find Full Text PDF

The multidomain adaptor protein syntenin is known to mediate cancer cell metastasis and invasion through its tandem PDZ1 and PDZ2 domains, leading to the postulation that the PDZ tandem may serve as a potential drug target for cancer treatment. Here we report the development of high-affinity peptide blockers to target the syntenin tandem PDZ domain, and elucidate that blocking syntenin correlates with the inhibition of cell migration and spreading. Two strategies are employed to derive high-affinity blockers from the low-affinity natural binding peptides: first, dimerization of the C termini of natural syntenin-binding peptides confers dimer peptides with much higher affinity than the monomers; second, unnatural amino acid substitution at P-1 and P-2 positions of the PDZ-binding sequence increases the binding affinity.

View Article and Find Full Text PDF

We investigated the role of exosomes derived from maternal and umbilical cord blood in the regulation of angiogenesis. We report here that both maternal exosomes (MEs) and umbilical exosomes (UEs) significantly enhance HUVEC proliferation, migration, and tube formation. Importantly, ME-treated HUVECs (MEXs) displayed significantly increased migration, but not proliferation or tube formation, compared with UE-treated HUVECs (UEXs).

View Article and Find Full Text PDF

Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date.

View Article and Find Full Text PDF

The low-temperature flowering-response pathway, used as an inductive stimulus to induce flowering in plant species from temperate regions in response to cold temperature, has been extensively studied. However, limited information is available on the flower transition of several bulbous species, which require high temperature for flower differentiation. Narcissus tazetta var.

View Article and Find Full Text PDF

Winter dormancy has been extensively studied in many plants, while much less information is available for summer dormancy. Narcissus tazetta var. chinensis is characterized by a prolonged period of summer dormancy during the annual cycle.

View Article and Find Full Text PDF