Tumorigenic functions due to the formation of fusion genes have been targeted for cancer therapeutics (i.e. kinase inhibitors).
View Article and Find Full Text PDFBackground: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S.
View Article and Find Full Text PDFCirculating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples.
View Article and Find Full Text PDFA new shape memory hydrogel, which can be programmed with quadruple geometries when stimuli are applied sequentially, is presented. With a new redox-responsive stimulus coupled with two other common regulation mechanisms, this hydrogel shows multiple shape memory behaviours, which is promising for various applications, especially drug delivery.
View Article and Find Full Text PDFBackground: Further advances of targeted cancer therapy require comprehensive in-depth profiling of somatic mutations that are present in subpopulations of tumor cells in a clinical tumor sample. However, it is unclear to what extent such intratumor heterogeneity is present and whether it may affect clinical decision-making. To study this question, we established a deep targeted sequencing platform to identify potentially actionable DNA alterations in tumor samples.
View Article and Find Full Text PDFBackground: The mitochondrial DNA (mtDNA) depletion syndromes (MDDSs) are autosomal recessive disorders characterized by a reduction in cellular mtDNA content. Mutations in at least 9 genes [POLG, polymerase (DNA directed), gamma; DGUOK, deoxyguanosine kinase; TK2, thymidine kinase, mitochondrial; TYMP, thymidine phosphorylase; MPV17, MpV17 mitochondrial inner membrane protein; SUCLA2, succinate-CoA ligase, ADP-forming, beta subunit; SUCLG1, succinate-CoA ligase, alpha subunit; RRM2B, RRM2B, ribonucleotide reductase M2 B (TP53 inducible); and C10orf2, chromosome 10 open reading frame 2 (also known as TWINKLE)] have been reported to cause mtDNA depletion. In the clinical setting, a simple method to quantify mtDNA depletion would be useful before undertaking gene sequence analysis.
View Article and Find Full Text PDFWe established an extensive and rapid system using suspension array to detect 61 representative mitochondrial DNA (mtDNA) heteroplasmic or homoplasmic point mutations (29 for Series A and 32 for Series B) in 22 genes: 1 each in MT-RNR1, -TV, -ND1, -TQ, -TW, -TC, and -TH genes; 2 each in MT-TN, -TG, -ND4, -TL2, -TE, and -CYB genes; 3 each in MT-ATP6, -ND3, and -ND5 genes; 4 each in MT-CO1 and -TK genes; 5 each in MT-TI, -TS1, and -ND6 genes; and 10 in the MT-TL1 gene. We carefully selected 5'-biotinylated primers and pooled primers for use in two sets of multiplex-PCR amplifications. To detect both mutant and wild-type mtDNA, even when polymorphisms were present near the target mutation sites, we designed specific oligonucleotide probes.
View Article and Find Full Text PDFDeoxyguanosine kinase (DGUOK) catalyzes the first step of the mitochondrial deoxypurine salvage pathway, the phosphorylation of purine deoxyribonucleosides. Mutations in the DGUOK gene have been linked to inherited mtDNA depletion syndromes, neonatal liver failure, nystagmus, and hypotonia. Previously, we reported the first case of a heterozygous unclassified c.
View Article and Find Full Text PDFPurpose: Mitochondrial disorders constitute a group of clinically and genetically heterogeneous diseases for which molecular diagnosis has been a challenge. The current procedures for diagnosis of mitochondrial DNA deletion and depletion syndromes based on Southern analysis and quantitative polymerase chain reaction are particularly inefficient for determining important parameters of deletion endpoints and percent heteroplasmy. We have developed an improved approach for routine analyses of these disorders in a clinical laboratory.
View Article and Find Full Text PDFMutations in POLG gene are responsible for a wide spectrum of clinical disorders with altered mitochondrial DNA (mtDNA) integrity, including mtDNA multiple deletions and depletion. Sensory ataxic neuropathy with ophthalmoparesis (SANDO) caused by mutations in POLG gene, fulfilling the clinical triad of sensory ataxic neuropathy, dysarthria and/or dysphagia and ophthalmoparesis, has described in a few reports. Here we described five cases of adult onset autosomal recessive sensory ataxic neuropathy with ophthalmoplegia.
View Article and Find Full Text PDFThe DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span.
View Article and Find Full Text PDFLike vertebrates, the genome of Drosophila melanogaster also contains methylated cytosines. However, the enzyme(s) responsible for this methylation has been elusive. By DNA transfection and sodium bisulfite sequencing, we show here that overexpression of dDnmt2, which is the only expressed and cloned Drosophila protein consisting of motifs conserved among the DNA cytosine methyltransferases, results in genomic DNA methylation of Drosophila S2 cells.
View Article and Find Full Text PDFDNMT2 is a subgroup of the eukaryotic cytosine-5 DNA methyltransferase gene family. Unlike the other family members, proteins encoded by DNMT2 genes were not known before to possess DNA methyltransferase activities. Most recently, we have shown that the genome of Drosophila S2 cells stably expressing an exogenous Drosophila dDNMT2 cDNA became anomalously methylated at the 5'-positions of cytosines (Reddy, M.
View Article and Find Full Text PDF