BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer.
View Article and Find Full Text PDFTargeting the activation function-1 (AF-1) domain located in the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the cochaperone Bag-1L. Mutations in the AR interaction domain or loss of Bag-1L abrogate AR signaling and reduce PCa growth.
View Article and Find Full Text PDFA series of novel myrtenal derivatives bearing 1,2,4-triazole moiety were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Their structures were confirmed by using UV-vis, FTIR, NMR, and ESI-MS analysis. Antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against f.
View Article and Find Full Text PDFFLIMaging nanoparticle degradation: semiconductor and metal nanoparticle degradation has been observed in live cells over 3 d via the change of the characteristic luminescence lifetime using fluorescence lifetime imaging microscopy (FLIM). Thus, FLIM is a simple yet robust tool to examine the intracellular stability of photoluminescent nanoparticles in live cells, tissues, and organisms.
View Article and Find Full Text PDFEngineered nanomaterials are known to enter human cells, often via active endocytosis. Mechanistic details of the interactions between nanoparticles (NPs) with cells are still not well enough understood. NP size is a key parameter that controls the endocytic mechanism and affects the cellular uptake yield.
View Article and Find Full Text PDFIn addition to their actions in the cell nucleus, glucocorticoids exhibit rapid non-nuclear responses that are mechanistically not well understood. To explain these effects, the localization of a glucocorticoid receptor (GR) expressed in mast cells as a GFP fusion was analyzed after activation of the cells on allergenic lipid arrays. These arrays were produced on glass slides by dip-pen nanolithography (DPN) and total internal reflection (TIRF) microscopy was used to visualize the GR.
View Article and Find Full Text PDFWe have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ∼700 nm, were observed to accumulate on the cell membrane prior to internalization.
View Article and Find Full Text PDFA microwave-assisted strategy for synthesizing dihydrolipoic acid (DHLA) capped fluorescent gold nanoclusters (AuNCs) has been developed. Irradiation with microwaves during synthesis enhanced the fluorescence quantum yield (QY) of AuNCs by about five-fold and shortened the reaction time from hours to several minutes. The as-synthesized DHLA-AuNCs possessed bright near-infrared fluorescence (QY: 2.
View Article and Find Full Text PDF