Publications by authors named "Linxian Ding"

The purpose of this study was to investigate the purification effect of a new adsorption material containing bioreactor and the critical role of viable but non-culturable (VBNC) bacteria in a eutrophication ecosystem. Major water quality parameters of the prepared eutrophic water were determined, and the microbial community was analyzed during 2 years. The results showed that removal rates of total phosphorus (TP), total nitrogen (TN), chlorophyll-a (Chl-a), and chemical oxygen demand (COD) were 90.

View Article and Find Full Text PDF

Culture supernatant containing resuscitation-promoting factor (SRpf) from Micrococcus luteus was added to the sequencing batch reactor (SBR) for effective treatment of phenol-containing wastewater. SRpf acclimation significantly improved combined removal of phenol and nutrients. Moreover, the Illumina high-throughput sequencing analysis revealed that the SRpf boosted bacteria diversity, which enhanced the stability of the system under phenol stress.

View Article and Find Full Text PDF

A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated ZYSR67-Z, was isolated from a pharmaceutical wastewater sample collected from a chemical factory in Zhejiang, China. The strain was motile by a single polar flagellum and grew at 4-42 °C (optimum, 35 °C), pH 5.0-9.

View Article and Find Full Text PDF

Nowadays, much of what we know regarding the isolated cellulolytic bacteria comes from the conventional plate separation techniques. However, the culturability of many bacterial species is controlled by resuscitation-promoting factors (Rpfs) due to entering a viable but non-culturable (VBNC) state. Therefore, in this study, Rpf from Micrococcus luteus was added in the culture medium to evaluate its role in bacterial isolation and enhanced effects on cellulose-degrading capability of bacterial community in the compost.

View Article and Find Full Text PDF

We present here the draft genome sequence of strain 3M004, a probiotic that has potential for regulating quorum sensing. The strain was obtained from a type of aquafeed. The assembly consists of 2,459,326 bp and contains 33 contigs, with a G+C content of 45.

View Article and Find Full Text PDF

Printing and dyeing wastewater with high content of organic matters, high colority, and poor biochemical performance is hard to be degraded. In this study, we isolated viable but non-culturable (VBNC) bacteria from printing and dyeing wastewater with the culture media contained resuscitation promoting factor (Rpf) protein secreted by Micrococcus luteus, counted the culturable cells number with the most probable number, sequenced 16S rRNA genes, and performed polymerase chain reaction-denaturing gradient gel electrophoresis. It is obviously that the addition of Rpf in the enrichment culture could promote growth and resuscitation of bacteria in VBNC state to obtain more fastidious bacteria significantly.

View Article and Find Full Text PDF

Viable but nonculturable (VBNC) bacteria, which maintain the viability with loss of culturability, universally exist in contaminated and non-contaminated environments. In this study, two strains, Rhodococcus sp. TG13 and TN3, which were isolated from PCB-contaminated sediment and non-contaminated sediment respectively, were investigated under low temperature and oligotrophic conditions.

View Article and Find Full Text PDF

Numerous bacteria, including pollutant-degrading bacteria can enter the viable but nonculturable state (VBNC) when they encounter harsh environmental conditions. VBNC bacteria, as a vast majority of potent microbial resource can be of great significance in environmental rehabilitation. It is necessary to study the VBNC state of pollutant-degrading bacteria under various stress conditions.

View Article and Find Full Text PDF

A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition.

View Article and Find Full Text PDF

Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated.

View Article and Find Full Text PDF

The interfacial interactions between a foulant particle and rough membrane surface in a submerged membrane bioreactor (MBR) were quantitatively assessed by using a new-developed method. It was found that the profile of total interaction versus separation distance was complicated. There were an energy barrier and two negative energy ranges in the profile.

View Article and Find Full Text PDF

A Gram-stain positive, aerobic, non-motile actinobacterium, designated DSXY973(T), was isolated from soil samples collected from Xinjiang desert using medium supplemented with resuscitation-promoting factor, and subjected to a polyphasic taxonomic investigation. Phylogenetic analysis based on 16S rRNA gene sequences revealed that DSXY973(T) belonged to the genus Arthrobacter and was most closely related to Arthrobacter oryzae JCM 15922(T) with 97.1 % similarity.

View Article and Find Full Text PDF

A Gram-positive, aerobic, non-motile, non-spore forming strain, designated DSD51W(T), was isolated using a resuscitative technique from a soil sample collected from Kyoto park, Japan, and characterized by using a polyphasic approach. The morphological and chemotaxonomic properties of the isolate were typical of those of members of the genus Rhodococcus. Strain DSD51W(T) was found to form a coherent cluster with Rhodococcus hoagii ATCC 7005(T), Rhodococcus equi NBRC 101255(T), Rhodococcus defluvii Call(T) and Rhodococcus kunmingensis YIM 45607(T) as its closest phylogenetic neighbours in 16S rRNA gene sequence analysis.

View Article and Find Full Text PDF

A Gram-positive, aerobic, non-motile and rod-coccus shaped novel actinobacterial strain, designated as TG9(T), was isolated from a polychlorinated biphenyl (PCB)-contaminated sediment in Taizhou city, Zhejiang province, eastern China. The isolate was observed to grow at 10-45 °C (optimum 28-32 °C), pH 5.0-11.

View Article and Find Full Text PDF

Recent advances in the bioremediation of polychlorinated biphenyl (PCB)-contaminated environments have focused on the development of approaches to stimulate the activities of indigenous bacterial communities. In this study, extracellular organic matter (EOM) from Micrococcus luteus was used to enhance the biphenyl-degrading capability of potentially functional microorganisms. The obtained results suggest that EOM significantly enhanced the biphenyl (BP)-degradation capability.

View Article and Find Full Text PDF

A Gram-positive, spore-forming, rod-shaped actinomycete, designated XJ46(T), was isolated from Xinjiang Uyghur Autonomous Region, China and subjected to a polyphasic taxonomic analysis. Morphological and chemotaxonomic characteristics of XJ46(T) were identified as being similar to those of members of the genus Prauserella. The phylogenetic tree based on 16S rRNA gene sequences showed that XJ46(T) shared the highest similarity (95.

View Article and Find Full Text PDF

A Gram-stain positive, aerobic, non-motile and rod-shaped actinobacterial strain, designated as ZYR 51(T), was isolated from pharmaceutical wastewater in Jinhua city, Zhejiang province, Eastern China. Isolation was aided by using a resuscitation-promoting factor, suggesting the strain was recovered from a viable but non-culturable state. Strain ZYR 51(T) was characterized by a polyphasic taxonomic approach.

View Article and Find Full Text PDF

The screening of pollutant-degrading bacteria are limited due to most of bacteria in the natural environment cannot be cultivated. For the purpose of resuscitating and stimulating "viable but non-culturable" (VBNC) or uncultured bacteria, Micrococcus luteus proteins are more convenient and cost-effective than purified resuscitation-promoting factor (Rpf) protein. In this study, medium composition and culture conditions were optimized by using statistical experimental design and analysis to enhance protein production by M.

View Article and Find Full Text PDF

The state of "viable but non-culturable" (VBNC) is a survival strategy adopted by microorganisms when exposed to environmental stress. With the increasingly serious problem of xenobiotics pollution, enhanced microbial processes that exploit the potential of microbes to remediate polychlorinated biphenyl-contaminated environments have been developed. Microorganisms represent a significant advance with respect to the transformation and degradation of polychlorinated biphenyls in the environment.

View Article and Find Full Text PDF

SRpf, culture supernatants from Micrococcus luteus containing the resuscitation-promoting factor (Rpf), was used to enhance the biphenyl-degrading capability of potential microorganisms. The obtained results suggest that the enrichment culture produced by the addition of SRpf (enrichment culture treatment group, ECT) enhanced the biphenyl degradation efficiency, cell growth and bacterial diversity significantly. Biphenyl at concentration of 1500 mg/L was almost completely degraded in 24 h using SRpf at a dosage of 15% (v/v).

View Article and Find Full Text PDF

A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in "viable but non-culturable" (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable.

View Article and Find Full Text PDF

Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect.

View Article and Find Full Text PDF

A bioflocculant with high flocculating activity, LC13-SF, produced by strain LC13(T) which was in a viable but nonculturable (VBNC) state, and which was woken up by Rpf (resuscitation promoting factor), was systematically investigated with regard to its fermentation conditions and flocculating activity. The key parameters influencing the bioflocculant LC13-SF were investigated through measuring the optical density at 660 (OD(660)) of the fermentation liquid and the optical density at 550 (OD(550)) of the centrifugal supernatant. The flocculating efficiency and the Zeta potentials were chosen as the response variables for the study of the flocculating activity.

View Article and Find Full Text PDF

Objective: The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria.

Methods: Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF