Background: Blood biomarkers of neurological injury could provide a rapid diagnosis of central nervous system (CNS) injury caused by infections. An FDA-approved assay for mild traumatic brain injury (TBI) measures glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which signal astrocyte and neuronal injury, respectively. Here, we assessed the applicability of this biomarker assay for determining infection-induced brain injury.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) global pandemic. Rapid and sensitive detection of the virus soon after infection is important for the treatment and prevention of transmission of COVID-19, and detection of antibodies is important for epidemiology, assessment of vaccine immunogenicity, and identification of the natural reservoir and intermediate host(s). Patient nasal or oropharyngeal swabs or saliva used in conjunction with polymerase chain reaction (PCR) detect SARS-CoV-2 RNA, whereas lateral flow immunoassays (LFI) detect SARS-CoV-2 proteins.
View Article and Find Full Text PDFSignificant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas.
View Article and Find Full Text PDFWe have achieved sensitive, rapid and reproducible detection of three biological threat agents in a variety of biological and environmental matrices using the DELFIA time-resolved fluorometry (TRF) assay system (Perkin-Elmer Life Sciences, Akron, OH). Existing ELISA assays for the detection of Francisella tularensis, Clostridium botulinum A/B neurotoxin (BotNT A/B), and Staphylococcus aureus enterotoxin B (SEB) were converted to TRF assays. They use 100 microl of positive control or unknown per test well and require just over 2 h to run.
View Article and Find Full Text PDF