Publications by authors named "Linus J Ostberg"

The medium-chain dehydrogenase/reductase (MDR) superfamily has more than 600,000 members in UniProt as of March 2023. As the family has been growing, the proportion of functionally characterized proteins has been falling behind. The aim of this project was to investigate the binding pockets of nine different MDR protein families based on sequence conservation patterns and three-dimensional structures of members within the respective families.

View Article and Find Full Text PDF

Objective: Congenital adrenal hyperplasia (CAH) is an inborn error of metabolism and a common disorder of sex development where >90% of all cases are due to 21-hydroxylase deficiency. Novel and rare pathogenic variants account for 5% of all clinical cases. Here, we sought to investigate the functional and structural effects of four novel (p.

View Article and Find Full Text PDF

Background: All known attempts to isolate and characterize mammalian class V alcohol dehydrogenase (class V ADH), a member of the large ADH protein family, at the protein level have failed. This indicates that the class V ADH protein is not stable in a non-cellular environment, which is in contrast to all other human ADH enzymes. In this report we present evidence, supported with results from computational analyses performed in combination with earlier in vitro studies, why this ADH behaves in an atypical way.

View Article and Find Full Text PDF

Mammalian alcohol dehydrogenase (ADH) is a protein family divided into six classes and the number of known family members is increasing rapidly. Several primate genomes are completely analyzed for the ADH region, where higher primates (human and hominoids) have seven genes of classes ADH1-ADH5. Within the group of non-hominoids apes there have been further duplications and species with more than the typical three isozymic forms for ADH1 are present.

View Article and Find Full Text PDF

It is now about half a century since molecular research on alcohol dehydrogenase (ADH), short-chain dehydrogenase/reductase (SDR) and medium-chain dehydrogenase/reductase (MDR) started. During this time, at least four stages of research can be distinguished, which led to many ADH, SDR and MDR structures from which their origins could be traced. An introductory summary of these stages is given, followed by a current update on the now known structures, including the present pattern of mammalian MDR-ADH enzymes into six classes and their evolutionary relationships.

View Article and Find Full Text PDF

Aggregation of transthyretin (TTR), a plasma-binding protein for thyroxine and retinol-binding protein, is the cause of several amyloid diseases. Disease-associated mutations are well known, but wild-type TTR is, to a lesser extent, also amyloidogenic. Monomerization, not oligomer formation as in several other depository diseases, is the rate-limiting step in TTR aggregation, and stabilization of the natively tetrameric form can inhibit amyloid formation.

View Article and Find Full Text PDF

The C-peptide of proinsulin exhibits multiple activities and several of the underlying molecular interactions are known. We recently showed that human C-peptide is sub-divided into a tripartite architecture and that the pattern, rather than the exact residue positions, is a characteristic feature. We have now analyzed 75 proinsulins, ranging from fish to human and find a limited co-evolution with insulin, but with many marked deviations.

View Article and Find Full Text PDF

Background: A detailed genotype-phenotype evaluation is presented by studying the enzyme activities of five rare amino acid substitutions (Arg233Gly, Ala265Ser, Arg341Trp, Arg366Cys and Met473Ile) identified in the CYP21A2 gene in patients investigated for Congenital adrenal hyperplasia (CAH).

Objective: To investigate whether the mutations identified in the CYP21A2 gene are disease causing and to establish a gradient for the degree of enzyme impairment to improve prediction of patient phenotype.

Design And Patients: The CYP21A2 genes of seven patients investigated for CAH were sequenced and five mutations were identified.

View Article and Find Full Text PDF

Alcohol dehydrogenase 5 (ADH5) is a member of the mammalian alcohol dehydrogenase family of yet undefined functions. ADH5 was first identified at the DNA level in human and deer mouse. A rat alcohol dehydrogenase structure of similar type has been isolated at the cDNA level using human ADH5 as a screening probe, where the rat cDNA structure displayed several atypical properties.

View Article and Find Full Text PDF

Mammalian alcohol dehydrogenase (ADH) can be divided into six classes, ADH1-ADH6, according to primary structure and function, where the classes are further subdivided into isozymes and allelic forms. With the increasing amount of available genomic data a general pattern is possible to trace within the mammalian ADH gene and protein families. The transcriptional order for the ADH genes in all mammalian genomes is the same (ADH4-ADH1-ADH6-ADH5-ADH2-ADH3), but the cluster is found on different chromosomes in different species.

View Article and Find Full Text PDF

Alcohol dehydrogenase 3 (ADH3) has been assigned a role in nitric oxide homeostasis due to its function as an S-nitrosoglutathione reductase. As altered S-nitrosoglutathione levels are often associated with disease, compounds that modulate ADH3 activity might be of therapeutic interest. We performed a virtual screening with molecular dockings of more than 40,000 compounds into the active site of human ADH3.

View Article and Find Full Text PDF