Publications by authors named "Linu Thomas"

Purpose Of Review: Ewing's sarcoma is a small round-cell tumour typically arising in the bones, and only rarely affecting soft tissues. These are rarely seen in the head and neck comprising 1-9% of all cases, making management of these tumours a challenge. This review aims to review the current literature to update the current diagnostic and treatment options in head and neck Ewing's sarcoma.

View Article and Find Full Text PDF

Vitamin D3 (VD3) and iron-blend granules were blended with corn and lentil composite flour (75/25, w/w) and fed into a pilot-scale twin-screw extruder to produce ready-to-eat snacks. The morphology and microstructure of extruded snacks were examined using scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), X-ray powder diffraction, and FT-IR. Differential scanning calorimetry and thermogravimetric analysis measured the melting temperature and thermal stability of the extrudates.

View Article and Find Full Text PDF

The aim of this study was to develop vitamin D (VD) and iron (Fe) blended granules using Neusilin® US2 as an excipient. A central composite design of experiments was used for the continuous manufacturing process, considering VD and iron as independent variables and the bulk density, flow index, oil holding capacity, and color difference as response variables. The addition of VD had a significant effect on the powder flow properties.

View Article and Find Full Text PDF

In this work, a twin-screw dry granulation (TSDG) was adopted to produce vitamin D3 (VD3) and iron blended dry granules using corn starch as an excipient. Response surface methodology was applied to determine the effect of the formulation compositions (VD3 and iron) on granule properties [tapped bulk density, oil holding capacity, and volumetric mean particle size (D50)]. Results indicated that the model fitted well, and responses, in particular flow properties, were significantly affected by the composition.

View Article and Find Full Text PDF

The present work aimed to encapsulate the thyme essential oil (TEO) in β-cyclodextrin (BCD) and γ-cyclodextrin (GCD) complexes in two selected cyclodextrin (CD) to TEO ratios (85/15 and 80/20 w/w) and compare the physicochemical, antioxidant, and antimicrobial properties of the encapsulated powders. The inclusion complexes between CD and TEO were prepared by blending aqueous CD and TEO in ethanol followed by freeze-drying. The powder properties were assessed by measuring particle size and microstructure using SEM, FTIR, and XRD.

View Article and Find Full Text PDF

The brown wheat flour (BWF)-based Arabic bread was fortified with chicory-derived inulin. The objective of this work was to assess the influence of the inulin concentration (1.25 to 5%) on the rheological, textural properties, and fermentation efficacy of enriched BWF dough.

View Article and Find Full Text PDF

Nutritionally, particle size has significant impact on food digestibility in the gastrointestinal system. Controlling the rheological behaviors of particles in dispersion has been of major interest in the industry. In this work, the quinoa seed was ground into flour, followed by fractionating into a selected particle size [+30-mesh (>595-μm) to +200-mesh (>74-μm)].

View Article and Find Full Text PDF

The impact of high-pressure treatment on the gelatinization of quinoa starch (QS) dispersions was investigated as a function of pressure (300, 450 and 600 MPa for 15 min) and starch to water (S/W) ratio (1:3 and 1:4 w/w). The structural changes of QS were characterized by rheological, DSC, SEM, XRD, and FTIR spectroscopy. The water holding capacity and granules particle size increased significantly with the intensity of pressure.

View Article and Find Full Text PDF

Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch.

View Article and Find Full Text PDF

Small amplitude oscillatory rheology and creep behavior of β-glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle-to-water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough.

View Article and Find Full Text PDF