Publications by authors named "Linton M Traub"

Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring.

View Article and Find Full Text PDF

Linton M. Traub and Frances M. Brodsky discuss the life and achievements of Ernst Ungewickell, who passed away on August 19th.

View Article and Find Full Text PDF

Besides AP-2 and clathrin triskelia, clathrin coat inception depends on a group of early-arriving proteins including Fcho1/2 and Eps15/R. Using genome-edited cells, we described the role of the unstructured Fcho linker in stable AP-2 membrane deposition. Here, expanding this strategy in combination with a new set of llama nanobodies against EPS15 shows an FCHO1/2-EPS15/R partnership plays a decisive role in coat initiation.

View Article and Find Full Text PDF

Short peptide motifs in unstructured regions of clathrin-adaptor proteins recruit clathrin to membranes to facilitate post-Golgi membrane transport. Three consensus clathrin-binding peptide sequences have been identified and structural studies show that each binds distinct sites on the clathrin heavy chain N-terminal domain (NTD). A fourth binding site for adaptors on NTD has been functionally identified but not structurally characterised.

View Article and Find Full Text PDF

Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially decoded by other endocytic pioneers Fcho1/2 and AP-2.

View Article and Find Full Text PDF

Polymeric spirals of crescent-shaped BAR-domain superfamily proteins are touted to girdle eukaryotic phospholipid bilayers into narrow tubules for trafficking and membrane remodeling events. But McDonald et al. (2015) in this issue of Developmental Cell question whether this broadly held view and conceptually appealing mechanism for membrane sculpting is really overhyped.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed.

View Article and Find Full Text PDF

In oviparous animals, clathrin-dependent endocytosis is often critical to stockpile a necessary supply of yolk within the maturing oocyte, which enables subsequent embryonic development. In the physically linked chains of maturing egg chambers within the Drosophila melanogaster ovary, a distinct, morphologically discernable subset undergoes a massive burst clathrin-mediated endocytosis to accumulate yolk in a process termed vitellogenesis. Here, we describe how to prepare isolated ovaries to follow endocytosis, and detail approaches to follow live uptake of soluble reporters into vitellogenic Drosophila egg chambers.

View Article and Find Full Text PDF

The AP-2 clathrin adaptor complex oversees endocytic cargo selection in two parallel but independent manners. First, by physically engaging peptide-based endocytic sorting signals, a subset of clathrin-dependent transmembrane cargo is directly collected into assembling buds. Synchronously, by interacting with an assortment of clathrin-associated sorting proteins (CLASPs) that independently select different integral membrane cargo for inclusion within the incipient bud, AP-2 handles additional cargo capture indirectly.

View Article and Find Full Text PDF

The endosomal system is expansive and complex, characterized by swift morphological transitions, dynamic remodeling of membrane constituents, and intracellular positioning changes. To properly navigate this ever-altering membrane labyrinth, transmembrane protein cargoes typically require specific sorting signals that are decoded by components of protein coats. The best-characterized sorting process within the endosomal system is the rapid internalization of select transmembrane proteins within clathrin-coated vesicles.

View Article and Find Full Text PDF

Uroplakin (UP)3a is critical for urinary tract development and function; however, its role in these processes is unknown. We examined the function of the UP3a-like protein Upk3l, which was expressed at the apical surfaces of the epithelial cells that line the pronephric tubules (PTs) of the zebrafish pronephros. Embryos treated with upk3l-targeted morpholinos showed decreased pronephros function, which was attributed to defects in PT epithelial cell morphogenesis and polarization including: loss of an apical brush border and associated phospho-ERM proteins, apical redistribution of the basolateral Na(+)/K(+)-ATPase, and altered or diminished expression of the apical polarity complex proteins Prkcz (atypical protein kinase C zeta) and Pard3 (Par3).

View Article and Find Full Text PDF

Clathrin-mediated endocytosis occurs at multiple independent import sites on the plasma membrane, but how these positions are selected and how different cargo is simultaneously recognized is obscure. FCHO1 and FCHO2 are early-arriving proteins at surface clathrin assemblies and are speculated to act as compulsory coat nucleators, preceding the core clathrin adaptor AP-2. Here, we show that the μ-homology domain of FCHO1/2 represents an endocytic interaction hub.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called "eat-me" signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6-null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph.

View Article and Find Full Text PDF

The N-terminal domain (TD) of the clathrin heavy chain is folded into a seven-bladed β-propeller that projects inward from the polyhedral outer clathrin coat. As the most membrane-proximal portion of assembled clathrin, the TD is a major protein-protein interaction node. Contact with the TD β-propeller occurs through short peptide sequences typically located within intrinsically disordered segments of coat components that usually are elements of the membrane-apposed, inner 'adaptor' coat layer.

View Article and Find Full Text PDF

The roles of EGF receptor (EGFR) kinase activity and ubiquitination in EGFR endocytosis have been controversial. The adaptor protein and ubiquitin ligase Cbl has reportedly been required. Consistently, we now report that siRNA-mediated knock-down of c-Cbl and Cbl-b significantly slowed clathrin-dependent internalization of activated wild-type (wt) EGFR by inhibiting recruitment of the EGFR to clathrin-coated pits.

View Article and Find Full Text PDF

Cubam is a multi-ligand receptor involved in dietary uptake of intrinsic factor-vitamin B(12) in the small intestine and reabsorption of various low-molecular-weight proteins (such as albumin, transferrin, apolipoprotein A-I and vitamin D-binding protein) in the kidney. Cubam is composed of two proteins: cubilin and amnionless. Cubilin harbors ligand binding capabilities, while amnionless provides membrane anchorage and potential endocytic capacity via two FXNPXF signals within the cytosolic domain.

View Article and Find Full Text PDF

The EMBO Conference on Endocytic Machineries in Control of Cell Signalling and Tissue Morphogenesis held last October highlighted advances in our understanding of endocytic trafficking. A centrepiece was the remarkable plasticity and sorting options of the maturing late endosome compartment.

View Article and Find Full Text PDF

PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development.

View Article and Find Full Text PDF

Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding mu homology domains (muHDs).

View Article and Find Full Text PDF

Clathrin-mediated endocytosis oversees the constitutive packaging of selected membrane cargoes into transport vesicles that fuse with early endosomes. The process is responsive to activation of signalling receptors and ion channels, promptly clearing post-translationally tagged forms of cargo off the plasma membrane. To accommodate the diverse array of transmembrane proteins that are variably gathered into forming vesicles, a dedicated sorting machinery cooperates to ensure that non-competitive uptake from the cell surface occurs within minutes.

View Article and Find Full Text PDF

Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed beta-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo.

View Article and Find Full Text PDF