Edible insect products are recognized for their high-quality protein content and an array of essential nutrients, including minerals and fatty acids. As the demand for sustainable protein sources grows, insect-based foods are gaining attention as a viable solution to help address global food security. Emerging technologies including high-pressure processing (HPP) and ultrasound (US) have the potential to influence the key functional properties of insect proteins-such as solubility, gelling ability, foamability, and emulsifying capacity-making them more suitable for incorporation into various food products.
View Article and Find Full Text PDFDegeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate.
View Article and Find Full Text PDFAqueous zinc-ion batteries with superior operational safety have great promise to serve as wearable energy storage devices. However, the poor cycling stability and low output voltage limited their practical applications. Here, fully printable Zn/MoS-MnO micro-batteries are developed and demonstrated significantly enhanced cycling stability with sweat activation.
View Article and Find Full Text PDFThe formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains.
View Article and Find Full Text PDFJ Genet Genomics
November 2024
Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death.
View Article and Find Full Text PDFMetal coordination polymers are organometallic frameworks in which a metal and an organic ligand are linked a dative bond. The material in question exhibits ultra-high porosity, large specific surface area, and abundant active sites, which can be customised in terms of morphology, size, and electronic structure through rational design. Graphdiyne, a novel two-dimensional carbon allotrope, boasts structural stability and enhanced electrical conductivity due to its hybridization of sp and sp carbons.
View Article and Find Full Text PDFCochlear hair cells are the sensory cells responsible for transduction of acoustic signals. In mammals, damaged hair cells do not regenerate, resulting in permanent hearing loss. Reprogramming of the surrounding supporting cells to functional hair cells represent a novel strategy to hearing restoration.
View Article and Find Full Text PDFThe insecticide dimethoate, an organophosphate, has been used on crops, soybeans, fruits, and vegetables since the 1960s and is considered one of the most widely used pesticides. However, the understanding of the molecular mechanisms of dimethoate in crops, especially crop seedlings, is still limited. The green vegetable soya bean (Glycine max merr) is usually used as a vegetable-like fruit of soybean in many Asian countries.
View Article and Find Full Text PDFCingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown.
View Article and Find Full Text PDFThe resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress.
View Article and Find Full Text PDFIn this paper, a microdisk resonator (MDR) based on an - hybrid plasmonic waveguide (HPW) and its refractive index (RI) sensing characteristics are investigated. The plasmonic characteristics of the MDR based on the - HPW (APHPW-MDR) in near-infrared wavelengths are studied by using the finite element method. Through the structure parameter optimizations, the propagation length () of the APHPW-MDR is ∼165µ, which is ∼2.
View Article and Find Full Text PDFSalt stress severely restricts the growth of plants and threatens the development of agriculture throughout the world. Worldwide studies have shown that exogenous melatonin (MT) can effectively improve the growth of plants under salt stress. Through a meta-analysis of 549 observations, this study first explored the effects of salt stress characteristics and MT application characteristics on MT regulated plant growth under salt stress.
View Article and Find Full Text PDFThe Food and Drug Administration–approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss.
View Article and Find Full Text PDFLaccase, as a copper-containing polyphenol oxidase, primarily functions in the process of lignin, anthocyanin biosynthesis, and various abiotic/biotic stresses. In this study, forty-eight laccase members were identified in the eggplant genome. Only forty-two laccase genes from eggplant () were anchored unevenly in 12 chromosomes, the other six were mapped on unanchored scaffolds.
View Article and Find Full Text PDFHair cell degeneration is a major cause of sensorineural hearing loss. Hair cells in mammalian cochlea do not spontaneously regenerate, posing a great challenge for restoration of hearing. Here, we establish a robust, high-throughput cochlear organoid platform that facilitates 3D expansion of cochlear progenitor cells and differentiation of hair cells in a temporally regulated manner.
View Article and Find Full Text PDFGenetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15.
View Article and Find Full Text PDFHypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells.
View Article and Find Full Text PDFThe underlying molecular mechanisms of age-related hearing loss (ARHL) in humans and many strains of mice have not been fully characterized. This common age-related disorder is assumed to be closely associated with oxidative stress. Here, we demonstrate that mTORC1 signaling is highly and specifically activated in the cochlear neurosensory epithelium (NSE) in aging mice, and rapamycin injection prevents ARHL.
View Article and Find Full Text PDFMYH14 is a member of the myosin family, which has been implicated in many motile processes such as ion-channel gating, organelle translocation, and the cytoskeleton rearrangement. Mutations in MYH14 lead to a DFNA4-type hearing impairment. Further evidence also shows that MYH14 is a candidate noise-induced hearing loss (NIHL) susceptible gene.
View Article and Find Full Text PDFThermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization.
View Article and Find Full Text PDFRecently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented. This technique features the AlN thin film grown by thermal ALD at 400°C without plasma enhancement.
View Article and Find Full Text PDFZhonghua Shao Shang Za Zhi
October 2007
Objective: To investigate the distribution of burn pathogens and their antibiotic resistance in a burn unit, so as to provide reference for clinical practice.
Methods: Three hundred and forty-eight burn patients hospitalized in our department were enrolled in this study. The pathogens isolated from the wounds, blood, venous catheter, sputum, urine, purulent discharge of wounds in these patients, and their antibiotic resistance were surveyed by retrospective analysis from Jan, 2001 to Dec, 2006.