Most functional microorganisms cannot be cultivated due to entering a viable but non-culturable (VBNC) state, which limits the characterization and application of polychlorinated biphenyl (PCB)-degrading strains. Resuscitating VBNC bacteria could provide huge candidates for obtaining high-efficient PCB degraders. However, limited studies have focused on the ability of resuscitated strains for PCBs degradation.
View Article and Find Full Text PDFThe activities of indigenous bacterial communities in polychlorinated biphenyls (PCBs) contaminated environments is closely related to the efficiency of bioremediation processes. Using resuscitation promoting factor (Rpf) from Micrococcus luteus is a promising method for resuscitation and stimulation of functional bacterial populations under stressful conditions. This study aims to use the Rpf to accelerate the biodegradation of Aroclor 1242, and explore putative PCB degraders which were resuscitated by Rpf addition.
View Article and Find Full Text PDFResuscitated strains which were obtained by addition of resuscitation promoting factor (Rpf) could provide a vast majority of microbial source for obtaining highly efficient polychlorinated biphenyl (PCB)-degrading bacteria. In this study, the Castellaniella sp. strain SPC4 which was resuscitated by Rpf addition showed the highest efficiency in degradation of 3,3',4,4'-tetrachlorobiphenyl (PCB 77) among the resuscitated and non-resuscitated isolates.
View Article and Find Full Text PDF