The latest synthesized monolayer (ML) MoSiN material exhibits stability in ambient conditions, suitable bandgap, and high mobilities. Its potential as a next-generation transistor channel material has been demonstrated through quantum transport simulations. However, in practical two-dimensional (2D) material transistors, the electrical contacts formed by the channel and the electrode must be optimized, as they are crucial for determining the efficiency of carrier injection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Ultrathin oxide semiconductors are promising candidates for back-end-of-line (BEOL) compatible transistors and monolithic three-dimensional integration. Experimentally, ultrathin indium oxide (InO) field-effect transistors (FETs) with thicknesses down to 0.4 nm exhibit an extremely high drain current (10 μA/μm) and transconductance (4000 μS/μm).
View Article and Find Full Text PDFHigh-electron-mobility group III-V compounds have been regarded as a promising successor to silicon in next-generation field-effect transistors (FETs). Gallium arsenide (GaAs) is an outstanding member of the III-V family due to its advantage of both good n- and p-type device performance. Monolayer (ML) GaAs is the limit form of ultrathin GaAs.
View Article and Find Full Text PDFInterlayer engineering of graphite anodes in alkali metal ion (M = Li, Na, and K) batteries is carried out based on the first-principles calculations. By increasing the interlayer spacing of graphite, the specific capacity of Li or Na does not increase while that of K increases continuously (from 279 mA h g at the equilibrium interlayer spacing to 1396 mA h g at the interlayer spacing of 20.0 Å).
View Article and Find Full Text PDFFin field-effect transistors (FinFETs) dominate the present Si FETs. However, when the gate length is scaled down to the sub-10 nm region, the experimental Si FinFETs suffer from poor performance due to a large fin width (the minimum value is 3 nm). In this paper, an ultra-thin Si FinFET with a width of 0.
View Article and Find Full Text PDFMonolayer (ML) MoS2 is one of the most extensively studied two-dimensional (2D) semiconductors. However, it suffers from low carrier mobility and pervasive Schottky contact with metal electrodes. 2D semiconductor Bi2O2S, a sulfur analogue of 2D Bi2O2Se, has been prepared recently.
View Article and Find Full Text PDFA novel chitosan-based multifunctional nanoparticle (PY-CS-PLA) using cationic polylysine (PL) polymer and L-cysteine has been developed and investigated for the oral delivery of paclitaxel (PTX). As amphiphilic polymer, PY-CS-PLA presented good capability in self-assembling into spherical nanoparticle with mean size of 165 nm, and encapsulating PTX into the hydrophobic core. The encapsulated PTX was observed to be sustainedly released from the functionalized chitosan nanoparticle, and with a positive correlation to the pH value of the medium in the range of 1.
View Article and Find Full Text PDF