IEEE Trans Vis Comput Graph
March 2025
The rising popularity of 360-degree images and virtual reality (VR) has spurred a growing interest among creators in producing visually appealing content through effective color grading processes. Although existing computational approaches have simplified the global color adjustment for entire images with Preferential Bayesian Optimization (PBO), they neglect local colors for points of interest and are not optimized for the immersive nature of VR. In response, we propose a dual-level PBO framework that integrates global and local color adjustments tailored for VR environments.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2025
With the rise of short-form video platforms and the increasing availability of data, we see the potential for people to share short-form videos embedded with data in situ (e.g., daily steps when running) to increase the credibility and expressiveness of their stories.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2023
This paper presents a design space of interaction techniques to engage with visualizations that are printed on paper and augmented through Augmented Reality. Paper sheets are widely used to deploy visualizations and provide a rich set of tangible affordances for interactions, such as touch, folding, tilting, or stacking. At the same time, augmented reality can dynamically update visualization content to provide commands such as pan, zoom, filter, or detail on demand.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2022
When designing infographics, general users usually struggle with getting desired color palettes using existing infographic authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements' spatial arrangement. We propose a data-driven method that provides flexibility by considering users' preferences, lowers the expertise barrier via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to obtain color palettes for their infographics in an interactive and dynamic manner.
View Article and Find Full Text PDFThis article presents a new approach based on deep learning to automatically extract colormaps from visualizations. After summarizing colors in an input visualization image as a Lab color histogram, we pass the histogram to a pre-trained deep neural network, which learns to predict the colormap that produces the visualization. To train the network, we create a new dataset of ∼ 64K visualizations that cover a wide variety of data distributions, chart types, and colormaps.
View Article and Find Full Text PDF