Publications by authors named "Lino Morales Paredes"

To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed.

View Article and Find Full Text PDF

The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10.

View Article and Find Full Text PDF

Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially.

View Article and Find Full Text PDF

Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic).

View Article and Find Full Text PDF

Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is currently hampered by experimentation limited to demonstration-scale field systems and static lab-based microcosms that integrate field-derived materials. This limits fundamental mechanistic knowledge, extrapolation to contaminants and concentrations not present at current field sites, operational optimization, and integration into holistic water treatment trains.

View Article and Find Full Text PDF