Publications by authors named "Linnea Stridh Orrhult"

Three-dimensional (3D)-bioprinted lipoaspirate-derived adipose tissue (LAT) is a potential alternative to lipo-injection for correcting soft-tissue defects. This study investigated the long-term survival of 3D-bioprinted LAT and its proteomic signature and cellular composition. We performed proteomic and multicolour flow cytometric analyses on the lipoaspirate and 3D-bioprinted LAT constructs were transplanted into nude mice, followed by explantation after up to 150 days.

View Article and Find Full Text PDF

Establishing functional circulation in bioengineered tissue after implantation is vital for the delivery of oxygen and nutrients to the cells. Native cartilage is avascular and thrives on diffusion, which in turn depends on proximity to circulation. Here, we investigate whether a gridded three-dimensional (3D) bioprinted construct would allow ingrowth of blood vessels and thus prove a functional concept for vascularization of bioengineered tissue.

View Article and Find Full Text PDF

Long-term stability and biological safety are crucial for translation of 3D-bioprinting technology into clinical applications. Here, we addressed the long-term safety and stability issues associated with 3D-bioprinted constructs comprising a cellulose scaffold and human cells (chondrocytes and stem cells) over a period of 10 months in nude mice. Our findings showed that increasing unconfined compression strength over time significantly improved the mechanical stability of the cell-containing constructs relative to cell-free scaffolds.

View Article and Find Full Text PDF

Background: Three-dimensional (3D) bioprinting of cartilage is a promising new technique. To produce, for example, an auricle with good shape, the printed cartilage needs to be covered with skin that can grow on the surface of the construct. Our primary question was to analyze if an integrated 3D bioprinted cartilage structure is a tissue that can serve as a bed for a full-thickness skin graft.

View Article and Find Full Text PDF

Bioprinting is a powerful technique for the rapid and reproducible fabrication of constructs for tissue engineering applications. In this study, both cartilage and skin analogs were fabricated after bioink pre-cellularization utilizing a novel passive mixing unit technique. This technique was developed with the aim to simplify the steps involved in the mixing of a cell suspension into a highly viscous bioink.

View Article and Find Full Text PDF